A GPU-based Constraint Programming Solver

THE 40TH ANNUAL AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE
(AAAT 2026)

LJ
Pierre Talbot M I Il
pierre.talbot@uni.lu s

https://ptal.github.io UNIVERSITE DU
LUXEMBOURG
24th January 2026

University of Luxembourg



Constraint Programming

Constraint programming is a declarative approach to solve discrete constraint problems. In
particular, it supports natively non-linear constraints.

x€{1,2,3} Ay €{2,3,5} Ax>—y =5

A constraint solver can typically find a (best) solution satisfying the constraints.




What is the Problem?

Constraint solvers, and more largely combinatorial optimization, have not
benefited yet from GPU architectures.

hy?

Support for GPU accelerate 2251

@ Beneo Van
4

a or-tools-discuss

Occasionally, | found that | can apply for
Do you have plans to support GPUs?

Thanks

" Laurent Perron
; a or-tools-discuss

Sat is sparse by nature.



hat is the Problem?

Constraint solvers, and more largely combinatorial optimization, have not
benefited yet from GPU architectures.

Support for GPU accelerate 2251

)  BeneoVan
V.

& or-tools-discuss

Occasionally,| found that | can apply for
Do you have plans to support GPUs?

Thanks
. Laurent Perron
4 or-tools-discuss

Satis sparse by nature.

For 50 years+, constraint solvers have been primarily designed for CPU architectures.

Have we really tried on GPU architectures??



State of the Art: Combinatorial Optimization on GPU

Do we have an exact and general-purpose constraint solver running on GPU?

e Incomplete, general-purpose, full GPU: Often population-based algorithms®.
e Complete, not general, full GPU: Specific algorithms?
e Complete, general-purpose, hybrid CPU/GPU:

e offloading to GPU specialized filtering procedures®:*.
e cuOpt: new MILP solver—relaxation on GPU, search on CPU®.

IA. Arbelaez and P. Codognet, A GPU Implementation of Parallel Constraint-Based Local Search, PDP, 2014.
2Jan Gmys. Exactly Solving Hard Permutation Flowshop Scheduling Problems on Peta-Scale GPU-Accelerated
Supercomputers. INFORMS Journal on Computing, 2022.

3F. Campeotto et al., Exploring the use of GPUs in constraint solving, PADL, 2014

4F. Tardivo et al., Constraint propagation on GPU: A case study for the AllDifferent constraint, Journal of
Logic and Computation, 2023.

5Using primal-dual linear programming (PDLP).




Our Contributions

Turbo: a general and exact constraint solver fully executing on GPU
(propagation + search).

Main Characteristics

e Simple: interval-based constraint solving + backtracking search (no global constraints,
learning, restart, event-based propagation, ...).

e Efficient? Almost on-par with Choco on the quality of found objective bounds within
20mins. Can beat OR-Tools on some instances.

) https://github.com/ptal/turbo


https://github.com/ptal/turbo

CPU-based Parallel Constraint Solvers

And Why The Same Techniques Do Not Work on GPU



On CPU: Embarrasingly Parallel Search (EPS)°

Divide the problem into many subproblems beforehand (e.g. N x 30 with N the number of threads).

Subproblems A AAA A A A AAA

NN

Threads pool T1 T2 T3 T2 T1 Ti1 T3 T2 T2 T1

SA. Malapert et al., ‘Embarrassingly Parallel Search in Constraint Programming’, JAIR, 2016




On CPU: Embarrasingly Parallel Search (EPS)

Divide the problem into many subproblems beforehand (e.g. N x 30 with N the number of threads).

Subproblems A AAA A A A AAA

NN N

Threads pool T1 T2 T3 T2 T1 Ti1 T3 T2 T2 T1

= Other approach: portfolio approach (e.g., different search strategy on the same problem) as seen
in Choco and OR-Tools.

Each thread works on its own copy of the problem.



On GPU: 1 Subproblem per Thread Takes too Much Memory

s N

Global memory (96 GB)

L2 Cache (50MB)

SM 1 (256 KB L1 Cache) SM 132 (256 KB L1 Cache)

64 cores 64 cores

\. J

8448 cores grouped in 132 streaming multiprocessors (SM) of 64 cores each (H100).
= Oversubscribe (to hide memory latency): 1024 threads per SM



Search on GPU with EPS: one subproblem per S

Subproblem 2 Subproblem 132
Z N

[ \ Global memory (96 b&k )
AN

Subproblem 1 N\
( —

& \ L2 Cache (50MB) \

A \
SM l\ii KB L1 Cache) ‘5&132 (256 KB L1 Cache)
64 cores 64 cores
. J

To address load balancing issue, we create more subproblems than SMs (EPS).
(more details in the paper for the algorithm).

5More precisely, one subproblem per GPU block.




Propagation on GPU

Subproblew\ 2 Sq[;(:,roblem 132

( \ Global memory (96 G\B\)\ ]
& \\ L2 Cache (50MB) \\ J

N~ \
7(1&(; KB L1 Cache)\ ‘s& 132 (256 KB L1 Cache)

64 cores 64 cores

’

Sub(aroblew\ 1
\

—

\ Needs to PV°P“9“te n Pal’o«“el

N

\ — — J

We proposed a correct model of lock-free parallel propagation’.

7P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.




Representation of Constraints in AAAI 2022

Constraints: x +y <band y < z

Syntax tree In memory
< <
. A P N
<[e[ ]+ [x]y[5][<[4]][r]7]
5 vy z ~—— ~— ~——
x+y<5 y<z




One Constraint per GPU Thread?

Constraint propagation is essentially traversing the syntax tree, but it is not efficient on GPU:

e Non coalesced memory accesses: 2 non-adjacent reads trigger 2 memory transactions.

N PN
[<[le [+ alxly[5][<[[¢]«]r]2]

T 1

10



One Constraint per GPU Thread?

Constraint propagation is essentially traversing the syntax tree, but it is not efficient on GPU:

e Non coalesced memory accesses: 2 non-adjacent reads trigger 2 memory transactions.

[<|

<]

Dz

)

N
IR
~—_ 7~ ~—=

)

e Load imbalance: The first thread needs to do more work than the second.

10



One Constraint per GPU Thread?

Constraint propagation is essentially traversing the syntax tree, but it is not efficient on GPU:

e Non coalesced memory accesses: 2 non-adjacent reads trigger 2 memory transactions.

[<lle [T+ [x][y]5][<][¢]aly]]
T ~—_ "7~ ~—= T S~

e Load imbalance: The first thread needs to do more work than the second.

e Thread divergence: The code path is different on different kind of nodes.

(<[]

P T
Aalxly[s][<[ 4]y ]]
S~

T

10



Our Solution: Ternary Constraint Network

Ternary Constraint Network

Each constraint takes a regular form x =y ©® z with x,y,z € X (no constant) and
® € {+,/,*, mod, min, max, <,=}.

Constraints: x+y <b ~ t=x+y At<5b
y<z ~y=u+z Nu<0 (introduce auxiliary variables t and u)

In memory +‘t‘x‘y +‘y‘u‘z‘

t=x+y y=u+z

11




One Constraint per GPU Thread!

Ternary constraints are compactly stored and efficiently accessed:

e Coalesced memory accesses: Adjacent vectorized 16-byte loads.
Lt [x[yflly[u]z

) 1

12



One Constraint per GPU Thread!

Ternary constraints are compactly stored and efficiently accessed:

e Coalesced memory accesses: Adjacent vectorized 16-byte loads.

[ e [x ]l

lylufz

)

1

e Uniform load balancing: each thread performing the same work.

12



One Constraint per GPU Thread!

Ternary constraints are compactly stored and efficiently accessed:

e Coalesced memory accesses: Adjacent vectorized 16-byte loads.
Lt [x[yflly[u]z
) T

e Uniform load balancing: each thread performing the same work.

e Thread divergence: reduced by sorting constraints on ©.

10x speed-up with ternary constraints.

12



Benchmark: 1-to-1 Comparison

On 98 instances of the MiniZinc 2024 competition.®
Comparison of the best objective values found. Timeout 20 minutes, GPU H100.

Turbo better
Turbo better

Equal

30.6%

28.6%  Choco better

O,
48.0% 58.2%

Equal
OR-Tools better

8] instance unsat at root, 1 instance for which TCN is too large.

13



Conclusion

Turbo: General-purpose GPU constraint solver

e Simple: solving algorithms from 50 years ago.
= no global constraints, nogoods learning, lazy clause generation, restart strategies, event-based
propagation, trailing or recomputation-based state restoration and domain consistency.

e Efficient: Almost on-par with Choco (algorithmic optimization VS hardware optimization).

e Many possible optimizations to improve the efficiency, but need to be redesigned for GPU.

14
https://github.com/ptal/turbo



https://github.com/ptal/turbo

More Information...




Experimental Evaluation

On 98 instances of the MiniZinc 2024 competition.®
Timeout 20 minutes, CPU 64 cores, GPU H100.

solver MiniZinc score  #Optimal
Or-Tools 9.9 (64 threads) 266.7 82
Choco 4.10.18 (64 threads) 190.8 44
Or-Tools 9.9 (fixed search) 119.9 37
Choco 4.10.18 (fixed search) 49.3 25
Turbo 1.2.8 (fixed search) 45.8 20

91 instance unsat at root, 1 instance for which TCN is too large.

15



Drawback of Terna

Benchmark on the MiniZinc Challenge 2024 (96 instances)®.

10
Variables (log scale)

Increase in number of propagators and variables:

e The median increase of variables is 4.45x and propagators is 4.34x.

e The maximum increase of variables is 336x and propagators is 731x.
10|nstances not solved during preprocessing.

16




Divergence?

Normalized Operator Usage Across Instances

accap |
aircraft-disassembly
cable-tree-wiring
community-detection |
compression
concert-hall-cap
fox-geese-corn |
graph-clear

harmony
hoist-benchmark
monitor-placement-lid
neighbours
network_50_cstr
peacable_queens
portal

tiny-cvrp
train-scheduling
triangular

word-equations
yumi-dynamic

N~

s R
> = [ > = > L e
I H T I < ‘)l( T £

x E M x ﬁ IS M
I

> * =

Operators

100

17



Lock-free Parallel Propagation




Example of Parallel Propagation'!

Let's consider Z[x < 4 A x < 5] =Z[x < 4] || Z[x < 5]

Memory: Propagators:
X+ [—o0,4] (Z[x < 4])
’ x = [—00, 00] ‘ [| X + [-00,5] (Z[x < 5])

11p. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.

18



Example of Parallel Propagation'!

Let's consider Z[x < 4 A x < 5] =Z[x < 4] || Z[x < 5]

Memory: Propagators:
- X [-o0, 4] (Z[x < 4])
x = [—oo, | B+ [-00,5] (Z[x <5])

Issue: nondeterminism? x can be equal to [—00, 4] or [—00, 5] depending on the order of
execution.

11p. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.
18



Example of Parallel Propagation'!

Let's consider Z[x < 4 A x < 5] =Z[x < 4] || Z[x < 5]

Memory: Propagators:

Xl < [—00, 4] (ZTx < 4])

[ x=[-o0, Ml | | B [-00,5 (Z[x <5])

Issue: nondeterminism? x can be equal to [—00, 4] or [—00, 5] depending on the order of

execution.
= Solution: fixpoint + fair scheduling + strict updates (if (v < x.ub) { x.ub = v; }).

11p. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.
18



GPU Fixpoint Algorithm

__device__ void fixpoint(Store& d, Props* props, int n) {
__shared__ bool has_changed = true;

// Keep going until no variable domain is modified.

while(has_changed) {
__syncthreads(); has_changed = false; __syncthreads();

19



GPU Fixpoint Algorithm

__device__ void fixpoint(Store& d, Props* props, int n) {

__shared__ bool has_changed = true;
// Keep going until no variable domain is modified.
while(has_changed) {
__syncthreads(); has_changed = false; __syncthreads();
// Execute all propagators (similar to AC1)

for(int i = threadIdx.x; i < n; i += blockDim.x) {

has_changed |=
}
__syncthreads();

props[i] .propagate(d) ;

GPU Challenges

e Coalesced memory accesses of the propagator representation props[i].

e Avoiding divergence in propagate.




