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Constraint Programming

Constraint programming is a declarative approach to solve discrete constraint problems. In
particular, it supports natively non-linear constraints.

x€{1,2,3} Ay €{2,3,5} Ax>—y =5

A constraint solver can typically find a (best) solution satisfying the constraints.




What is the Problem?

Constraint solvers, and more largely combinatorial optimization, have not
benefited yet from GPU architectures.
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For 50 years+, constraint solvers have been primarily designed for CPU architectures.

Have we really tried on GPU architectures??



State of the Art: Combinatorial Optimization on GPU

Do we have an exact and general-purpose constraint solver running on GPU?

e Incomplete, general-purpose, full GPU: Often population-based algorithms®.
e Complete, not general, full GPU: Specific algorithms?
e Complete, general-purpose, hybrid CPU/GPU:

e offloading to GPU specialized filtering procedures®:*.
e cuOpt: new MILP solver—relaxation on GPU, search on CPU®.

IA. Arbelaez and P. Codognet, A GPU Implementation of Parallel Constraint-Based Local Search, PDP, 2014.
2Jan Gmys. Exactly Solving Hard Permutation Flowshop Scheduling Problems on Peta-Scale GPU-Accelerated
Supercomputers. INFORMS Journal on Computing, 2022.

3F. Campeotto et al., Exploring the use of GPUs in constraint solving, PADL, 2014

4F. Tardivo et al., Constraint propagation on GPU: A case study for the AllDifferent constraint, Journal of
Logic and Computation, 2023.

5Using primal-dual linear programming (PDLP).




Our Contributions

Turbo: a general and exact constraint solver fully executing on GPU
(propagation + search).

Main Characteristics

e Simple: interval-based constraint solving + backtracking search (no global constraints,
learning, restart, event-based propagation, ...).

e Efficient? Almost on-par with Choco on the quality of found objective bounds within
20mins. Can beat OR-Tools on some instances.

) https://github.com/ptal/turbo


https://github.com/ptal/turbo

CPU-based Parallel Constraint Solvers

And Why The Same Techniques Do Not Work on GPU



On CPU: Embarrasingly Parallel Search (EPS)°

Divide the problem into many subproblems beforehand (e.g. N x 30 with N the number of threads).

Subproblems A AAA A A A AAA
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Threads pool T1 T2 T3 T2 T1 Ti1 T3 T2 T2 T1

SA. Malapert et al., ‘Embarrassingly Parallel Search in Constraint Programming’, JAIR, 2016




On CPU: Embarrasingly Parallel Search (EPS)

Divide the problem into many subproblems beforehand (e.g. N x 30 with N the number of threads).

Subproblems A AAA A A A AAA

NN N

Threads pool T1 T2 T3 T2 T1 Ti1 T3 T2 T2 T1

= Other approach: portfolio approach (e.g., different search strategy on the same problem) as seen
in Choco and OR-Tools.

Each thread works on its own copy of the problem.



On GPU: 1 Subproblem per Thread Takes too Much Memory

s N

Global memory (96 GB)

L2 Cache (50MB)

SM 1 (256 KB L1 Cache) SM 132 (256 KB L1 Cache)
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8448 cores grouped in 132 streaming multiprocessors (SM) of 64 cores each (H100).
= Oversubscribe (to hide memory latency): 1024 threads per SM



Search on GPU with EPS: one subproblem per S
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To address load balancing issue, we create more subproblems than SMs (EPS).
(more details in the paper for the algorithm).

5More precisely, one subproblem per GPU block.




Propagation on GPU
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We proposed a correct model of lock-free parallel propagation’.

7P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.




Representation of Constraints in AAAI 2022

Constraints: x +y <band y < z

Syntax tree In memory
< <
. A P N
<[e[ ]+ [x]y[5][<[4]][r]7]
5 vy z ~—— ~— ~——
x+y<5 y<z




One Constraint per GPU Thread?

Constraint propagation is essentially traversing the syntax tree, but it is not efficient on GPU:

e Non coalesced memory accesses: 2 non-adjacent reads trigger 2 memory transactions.

N PN
[<[le [+ alxly[5][<[[¢]«]r]2]

T 1
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One Constraint per GPU Thread?

Constraint propagation is essentially traversing the syntax tree, but it is not efficient on GPU:

e Non coalesced memory accesses: 2 non-adjacent reads trigger 2 memory transactions.
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e Load imbalance: The first thread needs to do more work than the second.
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One Constraint per GPU Thread?

Constraint propagation is essentially traversing the syntax tree, but it is not efficient on GPU:

e Non coalesced memory accesses: 2 non-adjacent reads trigger 2 memory transactions.

[<lle [T+ [x][y]5][<][¢]aly]]
T ~—_ "7~ ~—= T S~

e Load imbalance: The first thread needs to do more work than the second.

e Thread divergence: The code path is different on different kind of nodes.
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Our Solution: Ternary Constraint Network

Ternary Constraint Network

Each constraint takes a regular form x =y ©® z with x,y,z € X (no constant) and
® € {+,/,*, mod, min, max, <,=}.

Constraints: x+y <b ~ t=x+y At<5b
y<z ~y=u+z Nu<0 (introduce auxiliary variables t and u)

In memory +‘t‘x‘y +‘y‘u‘z‘

t=x+y y=u+z

11




One Constraint per GPU Thread!

Ternary constraints are compactly stored and efficiently accessed:

e Coalesced memory accesses: Adjacent vectorized 16-byte loads.
Lt [x[yflly[u]z

) 1
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e Coalesced memory accesses: Adjacent vectorized 16-byte loads.
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e Uniform load balancing: each thread performing the same work.
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One Constraint per GPU Thread!

Ternary constraints are compactly stored and efficiently accessed:

e Coalesced memory accesses: Adjacent vectorized 16-byte loads.
Lt [x[yflly[u]z
) T

e Uniform load balancing: each thread performing the same work.

e Thread divergence: reduced by sorting constraints on ©.

10x speed-up with ternary constraints.
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Benchmark: 1-to-1 Comparison

On 98 instances of the MiniZinc 2024 competition.®
Comparison of the best objective values found. Timeout 20 minutes, GPU H100.

Turbo better
Turbo better

Equal

30.6%

28.6%  Choco better

O,
48.0% 58.2%

Equal
OR-Tools better

8] instance unsat at root, 1 instance for which TCN is too large.
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Conclusion

Turbo: General-purpose GPU constraint solver

e Simple: solving algorithms from 50 years ago.
= no global constraints, nogoods learning, lazy clause generation, restart strategies, event-based
propagation, trailing or recomputation-based state restoration and domain consistency.

e Efficient: Almost on-par with Choco (algorithmic optimization VS hardware optimization).

e Many possible optimizations to improve the efficiency, but need to be redesigned for GPU.

14
https://github.com/ptal/turbo



https://github.com/ptal/turbo

More Information...




Experimental Evaluation

On 98 instances of the MiniZinc 2024 competition.®
Timeout 20 minutes, CPU 64 cores, GPU H100.

solver MiniZinc score  #Optimal
Or-Tools 9.9 (64 threads) 266.7 82
Choco 4.10.18 (64 threads) 190.8 44
Or-Tools 9.9 (fixed search) 119.9 37
Choco 4.10.18 (fixed search) 49.3 25
Turbo 1.2.8 (fixed search) 45.8 20

91 instance unsat at root, 1 instance for which TCN is too large.

15



Drawback of Terna

Benchmark on the MiniZinc Challenge 2024 (96 instances)®.

10
Variables (log scale)

Increase in number of propagators and variables:

e The median increase of variables is 4.45x and propagators is 4.34x.

e The maximum increase of variables is 336x and propagators is 731x.
10|nstances not solved during preprocessing.
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Divergence?

Normalized Operator Usage Across Instances
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Lock-free Parallel Propagation




Example of Parallel Propagation'!

Let's consider Z[x < 4 A x < 5] =Z[x < 4] || Z[x < 5]

Memory: Propagators:
X+ [—o0,4] (Z[x < 4])
’ x = [—00, 00] ‘ [| X + [-00,5] (Z[x < 5])

11p. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.
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Example of Parallel Propagation'!

Let's consider Z[x < 4 A x < 5] =Z[x < 4] || Z[x < 5]

Memory: Propagators:
- X [-o0, 4] (Z[x < 4])
x = [—oo, | B+ [-00,5] (Z[x <5])

Issue: nondeterminism? x can be equal to [—00, 4] or [—00, 5] depending on the order of
execution.

11p. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.
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Example of Parallel Propagation'!

Let's consider Z[x < 4 A x < 5] =Z[x < 4] || Z[x < 5]

Memory: Propagators:

Xl < [—00, 4] (ZTx < 4])

[ x=[-o0, Ml | | B [-00,5 (Z[x <5])

Issue: nondeterminism? x can be equal to [—00, 4] or [—00, 5] depending on the order of

execution.
= Solution: fixpoint + fair scheduling + strict updates (if (v < x.ub) { x.ub = v; }).

11p. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.
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GPU Fixpoint Algorithm

__device__ void fixpoint(Store& d, Props* props, int n) {
__shared__ bool has_changed = true;

// Keep going until no variable domain is modified.

while(has_changed) {
__syncthreads(); has_changed = false; __syncthreads();

19



GPU Fixpoint Algorithm

__device__ void fixpoint(Store& d, Props* props, int n) {

__shared__ bool has_changed = true;
// Keep going until no variable domain is modified.
while(has_changed) {
__syncthreads(); has_changed = false; __syncthreads();
// Execute all propagators (similar to AC1)

for(int i = threadIdx.x; i < n; i += blockDim.x) {

has_changed |=
}
__syncthreads();

props[i] .propagate(d) ;

GPU Challenges

e Coalesced memory accesses of the propagator representation props[i].

e Avoiding divergence in propagate.




