
A GPU-based Constraint Programming Solver

The 40th Annual AAAI Conference on Artificial Intelligence

(AAAI 2026)

Pierre Talbot

pierre.talbot@uni.lu

https://ptal.github.io

24th January 2026

University of Luxembourg

Constraint Programming

Constraint programming is a declarative approach to solve discrete constraint problems. In

particular, it supports natively non-linear constraints.

x ∈ {1, 2, 3} ∧ y ∈ {2, 3, 5} ∧ x2 − y = 5

A constraint solver can typically find a (best) solution satisfying the constraints.

1

What is the Problem?

Constraint solvers, and more largely combinatorial optimization, have not

benefited yet from GPU architectures.

Why?

For 50 years+, constraint solvers have been primarily designed for CPU architectures.

Have we really tried on GPU architectures??

2

What is the Problem?

Constraint solvers, and more largely combinatorial optimization, have not

benefited yet from GPU architectures.

Why?

For 50 years+, constraint solvers have been primarily designed for CPU architectures.

Have we really tried on GPU architectures??

2

State of the Art: Combinatorial Optimization on GPU

Do we have an exact and general-purpose constraint solver running on GPU?

• Incomplete, general-purpose, full GPU: Often population-based algorithms1.

• Complete, not general, full GPU: Specific algorithms2

• Complete, general-purpose, hybrid CPU/GPU:

• offloading to GPU specialized filtering procedures3,4.

• cuOpt: new MILP solver—relaxation on GPU, search on CPU5.

1A. Arbelaez and P. Codognet, A GPU Implementation of Parallel Constraint-Based Local Search, PDP, 2014.
2Jan Gmys. Exactly Solving Hard Permutation Flowshop Scheduling Problems on Peta-Scale GPU-Accelerated

Supercomputers. INFORMS Journal on Computing, 2022.
3F. Campeotto et al., Exploring the use of GPUs in constraint solving, PADL, 2014
4F. Tardivo et al., Constraint propagation on GPU: A case study for the AllDifferent constraint, Journal of

Logic and Computation, 2023.
5Using primal-dual linear programming (PDLP).

3

Our Contributions

Turbo: a general and exact constraint solver fully executing on GPU
(propagation + search).

Main Characteristics

• Simple: interval-based constraint solving + backtracking search (no global constraints,

learning, restart, event-based propagation, ...).

• Efficient? Almost on-par with Choco on the quality of found objective bounds within

20mins. Can beat OR-Tools on some instances.

https://github.com/ptal/turbo

4

https://github.com/ptal/turbo

CPU-based Parallel Constraint Solvers

And Why The Same Techniques Do Not Work on GPU

4

On CPU: Embarrasingly Parallel Search (EPS)6

Divide the problem into many subproblems beforehand (e.g. N × 30 with N the number of threads).

Subproblems

Threads pool

...

T1 T2 T3 T2 T1 T1 T3 T2 T2 T1

⇒ Other approach: portfolio approach (e.g., different search strategy on the same problem) as seen

in Choco and OR-Tools.

Each thread works on its own copy of the problem.

6A. Malapert et al., ‘Embarrassingly Parallel Search in Constraint Programming’, JAIR, 2016

5

On CPU: Embarrasingly Parallel Search (EPS)

Divide the problem into many subproblems beforehand (e.g. N × 30 with N the number of threads).

Subproblems

Threads pool

...

T1 T2 T3 T2 T1 T1 T3 T2 T2 T1

⇒ Other approach: portfolio approach (e.g., different search strategy on the same problem) as seen

in Choco and OR-Tools.

Each thread works on its own copy of the problem.

5

On GPU: 1 Subproblem per Thread Takes too Much Memory

...

Global memory (96 GB)

L2 Cache (50MB)

SM 1 (256 KB L1 Cache)

64 cores

SM 132 (256 KB L1 Cache)

64 cores

8448 cores grouped in 132 streaming multiprocessors (SM) of 64 cores each (H100).

⇒ Oversubscribe (to hide memory latency): 1024 threads per SM

135168 threads running in parallel!
For a 1MB constraint problem: 135GB of memory... 6

Search on GPU with EPS: one subproblem per SM6

To address load balancing issue, we create more subproblems than SMs (EPS).

(more details in the paper for the algorithm).

6More precisely, one subproblem per GPU block.

7

Propagation on GPU

We proposed a correct model of lock-free parallel propagation7.

7P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.

8

Representation of Constraints in AAAI 2022

Constraints: x + y < 5 and y < z

Syntax tree In memory

< • • + • • x y 5 < • • y z

y < zx + y < 5

9

One Constraint per GPU Thread?

Constraint propagation is essentially traversing the syntax tree, but it is not efficient on GPU:

• Non coalesced memory accesses: 2 non-adjacent reads trigger 2 memory transactions.

< • • + • • x y 5 < • • y z

• Load imbalance: The first thread needs to do more work than the second.

• Thread divergence: The code path is different on different kind of nodes.

< • • + • • x y 5 < • • y z

10

One Constraint per GPU Thread?

Constraint propagation is essentially traversing the syntax tree, but it is not efficient on GPU:

• Non coalesced memory accesses: 2 non-adjacent reads trigger 2 memory transactions.

< • • + • • x y 5 < • • y z

• Load imbalance: The first thread needs to do more work than the second.

• Thread divergence: The code path is different on different kind of nodes.

< • • + • • x y 5 < • • y z

10

One Constraint per GPU Thread?

Constraint propagation is essentially traversing the syntax tree, but it is not efficient on GPU:

• Non coalesced memory accesses: 2 non-adjacent reads trigger 2 memory transactions.

< • • + • • x y 5 < • • y z

• Load imbalance: The first thread needs to do more work than the second.

• Thread divergence: The code path is different on different kind of nodes.

< • • + • • x y 5 < • • y z

10

Our Solution: Ternary Constraint Network

Ternary Constraint Network

Each constraint takes a regular form x = y ⊙ z with x , y , z ∈ X (no constant) and

⊙ ∈ {+, /, ∗,mod ,min,max ,≤,=}.

Example

Constraints: x + y < 5 ⇝ t = x + y ∧ t < 5

y < z ⇝ y = u + z ∧ u < 0 (introduce auxiliary variables t and u)

In memory + t x y + y u z

y = u + zt = x + y

11

One Constraint per GPU Thread!

Ternary constraints are compactly stored and efficiently accessed:

• Coalesced memory accesses: Adjacent vectorized 16-byte loads.

+ t x y + y u z

• Uniform load balancing: each thread performing the same work.

• Thread divergence: reduced by sorting constraints on ⊙.

10x speed-up with ternary constraints.

12

One Constraint per GPU Thread!

Ternary constraints are compactly stored and efficiently accessed:

• Coalesced memory accesses: Adjacent vectorized 16-byte loads.

+ t x y + y u z

• Uniform load balancing: each thread performing the same work.

• Thread divergence: reduced by sorting constraints on ⊙.

10x speed-up with ternary constraints.

12

One Constraint per GPU Thread!

Ternary constraints are compactly stored and efficiently accessed:

• Coalesced memory accesses: Adjacent vectorized 16-byte loads.

+ t x y + y u z

• Uniform load balancing: each thread performing the same work.

• Thread divergence: reduced by sorting constraints on ⊙.

10x speed-up with ternary constraints.

12

Benchmark: 1-to-1 Comparison

On 98 instances of the MiniZinc 2024 competition.8

Comparison of the best objective values found. Timeout 20 minutes, GPU H100.

81 instance unsat at root, 1 instance for which TCN is too large.

13

Conclusion

Turbo: General-purpose GPU constraint solver

• Simple: solving algorithms from 50 years ago.

⇒ no global constraints, nogoods learning, lazy clause generation, restart strategies, event-based

propagation, trailing or recomputation-based state restoration and domain consistency.

• Efficient: Almost on-par with Choco (algorithmic optimization VS hardware optimization).

• Many possible optimizations to improve the efficiency, but need to be redesigned for GPU.

https://github.com/ptal/turbo
14

https://github.com/ptal/turbo

More Information...

14

Experimental Evaluation

On 98 instances of the MiniZinc 2024 competition.9

Timeout 20 minutes, CPU 64 cores, GPU H100.

solver MiniZinc score #Optimal

Or-Tools 9.9 (64 threads) 266.7 82

Choco 4.10.18 (64 threads) 190.8 44

Or-Tools 9.9 (fixed search) 119.9 37

Choco 4.10.18 (fixed search) 49.3 25

Turbo 1.2.8 (fixed search) 45.8 20

91 instance unsat at root, 1 instance for which TCN is too large.

15

Drawback of Ternary Constraint Networks

Benchmark on the MiniZinc Challenge 2024 (96 instances)10.

Increase in number of propagators and variables:

• The median increase of variables is 4.45x and propagators is 4.34x.

• The maximum increase of variables is 336x and propagators is 731x.
10Instances not solved during preprocessing.

16

Divergence?

The problems use few operators: limited divergence.

17

Lock-free Parallel Propagation

17

Example of Parallel Propagation11

Let’s consider IJx ≤ 4 ∧ x ≤ 5K = IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞,∞]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: fixpoint + fair scheduling + strict updates (if (v < x.ub) { x.ub = v; }).

11P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.

18

Example of Parallel Propagation11

Let’s consider IJx ≤ 4 ∧ x ≤ 5K = IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, ?]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: fixpoint + fair scheduling + strict updates (if (v < x.ub) { x.ub = v; }).

11P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.

18

Example of Parallel Propagation11

Let’s consider IJx ≤ 4 ∧ x ≤ 5K = IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, 4]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: fixpoint + fair scheduling + strict updates (if (v < x.ub) { x.ub = v; }).

11P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.

18

GPU Fixpoint Algorithm

__device__ void fixpoint(Store& d, Props* props, int n) {

__shared__ bool has_changed = true;

// Keep going until no variable domain is modified.

while(has_changed) {

__syncthreads(); has_changed = false; __syncthreads();

// Execute all propagators (similar to AC1)

for(int i = threadIdx.x; i < n; i += blockDim.x) {

has_changed |= props[i].propagate(d) ;

}

__syncthreads();

}

}

GPU Challenges

• Coalesced memory accesses of the propagator representation props[i].

• Avoiding divergence in propagate.

19

GPU Fixpoint Algorithm

__device__ void fixpoint(Store& d, Props* props, int n) {

__shared__ bool has_changed = true;

// Keep going until no variable domain is modified.

while(has_changed) {

__syncthreads(); has_changed = false; __syncthreads();

// Execute all propagators (similar to AC1)

for(int i = threadIdx.x; i < n; i += blockDim.x) {

has_changed |= props[i].propagate(d) ;

}

__syncthreads();

}

}

GPU Challenges

• Coalesced memory accesses of the propagator representation props[i].

• Avoiding divergence in propagate.

19

