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Abstract

Machine learning has tremendously benefited from graph-
ics processing units (GPUs) to accelerate training and infer-
ence by several orders of magnitude. However, this success
has not been replicated in general and exact combinatorial
optimization. Our key contribution is to propose a general-
purpose discrete constraint programming solver fully imple-
mented on GPU. It is based on integer interval bound propa-
gation and backtracking search. The two main ingredients are
(1) ternary constraint network optimized for GPU architec-
tures, and (2) an on-demand subproblems generation strategy.
Our constraint solving algorithm is significantly simpler than
those found in optimized CPU constraint solvers, yet is com-
petitive with sequential solvers in the MiniZinc 2024 chal-
lenge.

Code — https://github.com/ptal/turbo/tree/aaai2026

1 Introduction

Although graphics processing units (GPUs) have acceler-
ated training and inference of machine learning algorithms
by several orders of magnitude (Krizhevsky, Sutskever, and
Hinton 2012), this success has not been replicated in gen-
eral and exact combinatorial optimization. GPU-accelerated
combinatorial optimization has been applied to metaheuris-
tics algorithms (Arbelaez and Codognet 2014; Essaid et al.
2019; Tang, Tian, and Ha 2022; Huang et al. 2024), and to
exact optimization limited to specific problems (Gmys et al.
2016; Gmys 2022; Abbas and Swoboda 2022). A recent
breakthrough in linear programming (LP) on GPU has been
made possible by using a new LP solving algorithm called
primal-dual hybrid gradient method, which essentially re-
lies on matrix multiplication and addition operations (Cham-
bolle and Pock 2011; Applegate et al. 2021). This method
has been used with success to solve mixed integer linear pro-
gramming in the NVIDIA library cuOpt (NVIDIA Corpora-
tion 2025b). We pursue this strand of research by focusing
on constraint programming which supports non-linear con-
straints.

Constraint programming is a general and exact
method based on constraint propagation and backtracking
search (Lecoutre 2009). There have been a few attempts
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to accelerate constraint programming on GPU, either by
limiting the expressiveness of the constraint language to
variables with small domains (Dovier et al. 2021), or by
accelerating only the costly constraints while everything
else is performed on the CPU (Campeotto et al. 2014;
Tardivo et al. 2023, 2024). GPU-based propagation of
linear constraints was proposed in (Sofranac, Gleixner, and
Pokutta 2022) in the context of LP preprocessing, and of
continuous constraints in (Zhang, Feng, and Cagan 2023).

We recently introduced a new lock-free and for-
mally correct model of computation based on concur-
rent constraint programming (CCP), called parallel CCP
(PCCP) (Saraswat, Rinard, and Panangaden 1991; Talbot,
Pinel, and Bouvry 2022). This work showcases a proof-of-
concept constraint solver on GPU, where the propagation al-
gorithm is implemented within PCCP. However, the imple-
mentation is not optimized for GPU architectures and only
supports a few constraints applied to a scheduling problem.
In particular, the representation of constraints leads to un-
coalesced memory accesses, load imbalance, thread diver-
gence and unbounded stack; all of which are detrimental to
GPU efficiency (Hijma et al. 2023). Those issues are exacer-
bated when considering a general discrete constraint solver
supporting many constraints.

We address those issues by proposing Turbo: a general
and exact discrete constraint programming solver optimized
for GPU architectures. It is based on integer interval bound
propagation and backtracking search—both entirely imple-
mented on GPU. Our approach decomposes a constraint net-
work into a ternary constraint network (TCN) with a re-
duced number of operators, which is propagated in parallel
following the PCCP model. This ternary representation al-
lows us to optimize propagators on GPU architectures (Sec-
tion 3). Over the 100 instances of the MiniZinc 2024 chal-
lenge, the median increase is 4.8x in the number of variables
and 4.5x in the number of constraints, although 12 instances
remain more than 100x larger.

The hardware restrictions of GPU led us to design
a solver substantially simpler than an optimized CPU
constraint solver. In particular, it does not implement
global constraints, nogoods learning, lazy clause genera-
tion, restart strategies, event-based propagation, trailing or
recomputation-based state restoration and domain consis-
tency, although most of those optimizations are viewed as



essential in modern constraint solvers (Lecoutre 2009; Ohri-
menko, Stuckey, and Codish 2009). The key components of
Turbo are:

* Parallel bound consistency on TCN using a propagation
loop similar to AC1—the first one used in constraint pro-
gramming (Mackworth 1977).

* Full recomputation to restore the state (Schulte 1999).

* A novel variant of embarrassingly parallel search, based
on (Malapert, Régin, and Rezgui 2016), to distribute
search nodes across GPU blocks on-demand (Section 4).

Despite its unsophisticated algorithm, Turbo is general
and competitive with sequential solvers in the MiniZinc
2024 challenge (Stuckey et al. 2014). In comparison to
Choco (Prud’homme and Fages 2022), we find the same ob-
jective value on 48% of the instances, better ones on 23%
and worse ones on 29%. In comparison to the best in class
OR-Tools solver (Perron and Didier 2025), we are equal on
31% of the instances, better on 11% and worse on 58%. We
give a full experimental evaluation in Section 5.

2 Background
CUDA Programming Model

We overview the components of the NVIDIA Hopper GPU
architecture and CUDA programming model that are useful
to understand the following sections. To illustrate this sec-
tion, we take the example of the NVIDIA H100 GPU which
is used in the experiments. The H100 has a total of 8448
integer cores which are grouped in 132 streaming multipro-
cessors (SMs) consisting of 64 cores each. It has a global
memory—the main memory of the GPU—of 96GB and a
L2 cache of 50MB shared among all SMs. Each SM has its
own L1 cache of 256KB, from which 227KB can be explic-
itly used by the programmer—a part called shared memory.

The CUDA programming model follows the hierarchical
structure of the hardware. A block is a group of threads ex-
ecuting on a single SM, and the grid is the set of all blocks
executing on a single GPU. In the following, we set the size
of a block to 256 threads. In code, we have access to three
special variables: threadIdx.x is the index of a thread rela-
tive to a block, blockIdx.x is the index of the block relative
to the grid and blockDim.x is the number of threads per
block. A warp further subdivides a block into groups of 32
threads; therefore each block has 8 warps. To achieve par-
allelism, threads within a warp should execute—as much as
possible—the same instructions over multiple data (SIMD).
Different warps can execute different instructions in paral-
lel. A function executing on GPU is called a kernel. For
a more exhaustive presentation of CUDA and GPU pro-
gramming, we refer the reader to e.g. (NVIDIA Corporation
2025a; Wen-mei W. Hwu and David B. Kirk and Izzat El
Hajj 2023).

We now overview the two main challenges in CUDA pro-
gramming that are not encountered in CPU programming.

Memory Access Coalescing A thread reading a value
from the global memory triggers a 32, 64 or 128-byte mem-
ory transaction. If all threads in a warp read contiguous 4-
byte integers, the 32 integers can be retrieved in a single

128-byte memory transaction, a situation called memory ac-
cess coalescing. In the worst case, the 32 integers are spread
more than 128 bytes apart from each other, leading to 32
memory transactions. The difference in efficiency between
coalesced and uncoalesced accesses is usually up to an or-
der of magnitude, and therefore it is a crucial optimization
in CUDA programming.

Thread Divergence The threads of a warp execute one
common instruction at a time. Consider the program:

if(threadIdx.x % 32 < 16)PelseQ

Half of the threads in each warp execute P and the other half
execute Q. The two halves are executed sequentially: there
are at most 16 threads active at the same time since P and Q
are not on the same execution path and thus have no common
instruction.

Constraint Programming

In the following, we consider constraint programming over
integer variables only. Let X be a finite set of variables and
C' be a finite set of constraints. For each constraint ¢ € C,
let scp(c) € X be the set of free variables of ¢, called its
scope—for instance, scp(z < y) = {z, y}. Without loss of
generality, we represent the domain of variables using inter-
vals. Let I = {[f,u] | £ € ZU{—o0},u € ZU {+o0}, £ <
u} U {L} be the set of intervals ordered by inclusion with
a special element | representing the empty interval. We de-
fine Ib([¢,u]) £ ¢ and ub([¢,u]) £ u to extract the lower
and upper bounds. A constraint network is a pair P = (d, C)
such that d € X — [ is the domain function.We denote D
the set of all domain functions X — I ordered pointwise
d< d & VeeX, dx) C d(x)). An assignment is a
map asn : X — Z, and we denote the set of all assign-
ments by Asn. The set of solutions of a constraint is given
by rel(¢) € Asn. The set of solutions of a constraint net-
work is:

sol(d,C) = {asn € Asn |
Ve e C, asn € rel(c) ANVx € X, asn(z) € d(x)}

An interval propagator is a function p. D - D
where ¢ € (C is a constraint. Let d € D, then a
propagator is reductive (p.(d) < d), monotone (d <
d = pd) < pd)) and sound (sol(d,{c}) C
sol(pe(d),{})). It is also complete on singleton inter-
vals: whenever Vz € scp(c), Jv € Z, d(x) = [v,v], then
sol(d, {c}) 2 sol(pe(d), {}).

Constraint propagation consists in finding the greatest fix-
point of a set of propagators {p1,...,p,} over a domain
d € X — 1. As long as the propagators are executed
fairly, their order of execution does not matter and the same
greatest fixpoint is always eventually reached (Apt 1999).
This fact has been used to design various propagation algo-
rithms to accelerate the computation of the fixpoint (Schulte
and Stuckey 2008; Tack 2009). As constraint propagation is
sound but incomplete in general, it must be interleaved with
a search procedure. Let split € D — P(D) be a strictly
reductive (Vd € D, Vd' € split(d), d < d) and sound
and complete (Vd € D, J{sol(d',C) | d' € split(d)} =



Algorithm 1: Propagate-and-search

function minimize(d, C, best, z)
d(z) < d(z) N [—o0, lb(best(z)) — 1]
propagate(d, C')
if isasn(d) then
best < d
else if —isbot(d) then
Vd' € split(d), minimize(d', C, best, z)
end if
end function

sol(d, C))) branching procedure. We introduce next a stan-
dard optimization algorithm based on the propagate-and-
search constraint solving algorithm. Algorithm 1 finds a so-
lution best € D which minimizes the value of the variable
z € X. It relies on the following functions:

* propagate(d,{ci1,...,c,}) computes the greatest fix-
point of p., o...op., belowd.

e isasn(d) =Vr € X, Jv € Z, d(z) = [v,v]

s isbot(d) = v € X, d(x) = L
Here and thereafter, we always pass parameters by refer-
ence. The function isasn tests if d maps only to interval
singletons (assignment) and ¢sbot tests whether a variable
has an empty domain, in which case we must backtrack. It
is well-known that the algorithm minimize is a sound and
complete solving procedure, see e.g. (Lecoutre 2009; Tack
2009). The result holds even in the presence of infinite in-
tervals as long as they become finite after a finite number
of propagation steps. We rely on full restoration: the state is
restored by reapplying all branching decisions from the root
node before propagation (Schulte 1999). In this paper, we do
not discuss further state restoration and assume split returns
modified copies of the domain.

Parallel Constraint Programming There is a long his-
tory in parallel constraint solving going back as early as
logic programming (Gupta et al. 2001). The two main di-
rections are on parallelizing propagation and search. It has
proved difficult to parallelize propagation efficiently due to
the sequential interdependencies among propagators (Gent
et al. 2018). In fact, most modern constraint programming
solvers focus on parallelizing search, while keeping propa-
gation sequential. Perron (1999) and Schulte (2000) paral-
lelize search using a shared queue of nodes among threads;
it is the approach of the solver Gecode (Schulte, Tack, and
Lagerkvist 2020).

Instead of sharing the work queue, embarrassingly paral-
lel search (EPS) (Malapert, Régin, and Rezgui 2016) and
cube-and-conquer in SAT solvers (Heule, Kullmann, and
Marek 2017) decompose the problem a priori into enough
subproblems such that there is no subproblem taking much
longer to be solved than another. It is efficient and easy to
implement as threads require very few or no communica-
tion. To achieve load balancing, EPS suggests to decompose
the problem into 30 x 7" subproblems where 7' is the number
of threads. They show their approach to scale linearly (tested
up to 512 threads).

Parallel portfolio is another approach where the same
problem is explored in parallel from different angles,
such as different split functions. It is the current paral-
lel approach in OR-Tools (Perron and Didier 2025) and
Choco (Prud’homme and Fages 2022).

We refer to (Hamadi and Sais 2018) for a more exhaustive
presentation across combinatorial communities.

3 Bound Propagation on GPU

We perform bound propagation in parallel, within a block
and in-place (without copying d) using the function
propagate®™(d, {c1,...,c,}). The superscript blk empha-
sizes the fact parallel propagation is done within a single
block. We proposed a correct and lock-free propagate®™ al-
gorithm (Talbot, Pinel, and Bouvry 2022), but it does not
optimize the representation of constraints for GPUs. In this
section, we provide a better representation of constraints for
parallel propagation on GPU.

The Challenge It is possible to construct an infinite num-
ber of constraints, take for example the sequence (x; =
T2, 1 = X2 ™1 r3,T1 = I ®123O92 T4y .. > fora sequence
of arithmetic operators (®1, ®q, .. .). Therefore, we cannot
implement a different propagator function for each possible
constraint. Historically, solvers have limited their constraint
languages in order to avoid implementing too many differ-
ent propagators (Van Hentenryck 1989; Codognet and Diaz
1996; Benhamou and Older 1997; Sam-Haroud and Faltings
1996). More complex constraints must be rewritten into sup-
ported constraints automatically or by the user. However, the
decomposition of constraints into primitive ones increase the
number of auxiliary variables and propagators. It has been
shown to be detrimental to the solver performance (Schulte
and Tack 2013; Correia and Barahona 2013). A solution
to this issue is to implement a propagator as an interpreter
over the abstract syntax tree (AST) of the constraint. The
propagator recursively traverses the AST to evaluate each
node and compute the domain of each subexpression of the
constraint. It is called a view-based propagator in recent
work (Schulte and Tack 2013; Correia and Barahona 2013),
but a similar technique was already used in the HC-4 consis-
tency algorithm (Benhamou et al. 1999). Modern constraint
solvers such as Choco and OR-Tools implement view-based
propagation using inheritance to represent the AST, and sub-
type polymorphism to evaluate the tree.

On GPU architectures, the view-based representation of
propagators leads to uncoalesced memory accesses, load
imbalance, thread divergence and unbounded stack; all of
which are detrimental to GPU efficiency (Hijma et al. 2023).
To understand those issues, we depict the representation in
memory of the AST of two constraints (the dots and arrows
represent pointers):
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To achieve parallelism, we wish to propagate those two con-
straints in parallel. Both threads start by reading their respec-



tive symbol <, however, the symbols are not contiguous in
memory and therefore loads are not coalesced. The problem
is exacerbated when considering a warp (32 threads) which
generates additional non-coalesced accesses. Furthermore,
the different shapes of the constraints lead to load imbalance
and thread divergence.

Our Solution We solve those issues by rewriting the con-
straint network into a ternary constraint network (TCN), that
is, a constraint network with only constraints of arity 3 such
asx=y+zand b = (z < y) with {z,y, z,b} C X.

Definition 1. A ternary constraint network (d, C) is a con-
straint network such that each ¢ € C' is of the form x =
y ® z where z,y,z € X are variables and ® € OP =
{+, %, /, mod, min, maz, =, <}'.

The constraint language considered is sufficient to support
all instances of the 2024 MiniZinc challenge. Unary con-
straints of the form x = k, z < kand x > k where x € X
and k£ € Z are directly represented as domains of the vari-
ables. The lack of subtraction is justified by the relational
semantics of constraints as we can rewrite * = y — z into
y = x + z without loss of precision. We provide a complete
transformation of a constraint network into a TCN and its
preprocessing in (Talbot 2025), along with the proof that a
TCN has exactly the same set of solutions than the initial
constraint network; this poses no particular challenge. Note
that the global constraints are decomposed in primitive con-
straints before this transformation and using the MiniZinc
compiler in the experiments. We now discuss how TCN ad-
dresses the issues mentioned above.

Coalesced Memory Accesses Propagators for ternary
constraints are represented by a structure of 16 bytes con-
taining 3 variable’s indexes and the operator kind.

struct Bytecode {
int op; // each operator has a code.
int x;
int vy;
int z;
}i

The propagators’ data is contained in an array of bytecodes
Bytecodex bc, and the threads load contiguous byte-
codes. As a warp contains 32 threads and a memory trans-
action is at most 128-byte wide, we need only 4 memory
transactions (32 % 16/128) to load all the bytecodes within a
warp. Furthermore, we achieve almost optimal load balanc-
ing as no code path takes much longer than any other—all
operations consist of fast interval arithmetic.

We could argue that more memory transactions are
needed as we need 4 integer loads per bytecode, hence re-
quiring 4 memory transactions to load op, then 4 to load x,
and so on, leading to 16 transactions. We avoid this behav-
ior by performing a vectorized load of 4 integers in a single
PTX instruction (CUDA assembly code). To achieve that, it
is enough to cast Bytecode into the special int4 CUDA
type as follows:

"We follow MiniZinc semantics by using truncated integer di-
vision and modulus.

__device__ Bytecode load(int i) {
int4 b4 = reinterpret_cast<int4dx>(bc) [1];
return *reinterpret_cast<Bytecodex> (&b4);

}

Using the CUDA profiler, we could verify this func-
tion is indeed compiled into a single PTX instruction
1d.global.v4.s32, without additional temporary vari-
able. Note that a larger representation of constraints (e.g. 20
bytes) would prevent us from vectorizing the loads as 16
bytes is the maximum supported size.

Once the bytecode b is loaded, we must load the domains
of the three variables b . x,b .y and b . z into local variables
and propagate according to the operator b . op. We note that
the loads of the variables’ domains might not be coalesced as
propagators do not necessarily access variables contiguous
in memory.

In the case of small problems, we can overcome the coa-
lescence issue by storing the variables’ domains (or the full
TCN) in shared memory. It an order of magnitude faster to
load the variables’ domains from shared memory than from
global memory. Note that memory coalescence becomes ir-
relevant in this case as other memory access rules apply to
shared memory, but we do not further optimize those ac-
cesses as it is not currently a performance bottleneck.

Minimize Thread Divergence We identify three opti-
mizations to minimize thread divergence. Firstly, we sort
lexicographically the bytecodes array on (op, y, x, z). It re-
duces divergence as the propagators with the same operators
are executed together. Furthermore, we sort the variables
to reduce the number of memory transactions—the y, z, 2
order led to the best results. A second optimization is to
choose a small set of operators OP. It makes the propagation
code shorter, therefore triggering more inlining and requir-
ing less instruction loads. Although OP contains 8 distinct
operators, the propagator function can diverge in 13 loca-
tions due to the operators < and = being possibly negated
(e.g. 0 = (y = z) models y # z) and reified. For the few
problems using division, there might be additional diver-
gence points as propagation depends on the sign of the inter-
vals. Finally, we represent constants as variables as ternary
constraints do not have constants. It enables us to represent
ternary constraints with only 16 bytes as shown above, but
also to avoid diverging in the leaves of the AST where one
thread could load a constant and another a variable.

Warp-centric Fixpoint A warp propagates a group of 32
contiguous constraints {pc, , ..., De,, 4, } before moving on
to the next group. Since each constraint is propagated only
once, there is no guarantee we reach a local fixpoint—an is-
sue that is further exacerbated after sorting the constraints,
as contiguous constraints are then more likely to share vari-
ables. Because bytecodes and variable domains are already
resident in caches or registers, it is advantageous to reuse
them by reaching a local fixpoint before proceeding. This
approach, known as warp-centric programming, improves
temporal locality (Hijma et al. 2023).

Motivated by this observation, we propose a new warp-



centric fixpoint formulation:

wpropagate(d, {cy,...,cn}) =
8fpa (A\z.gfp, e, | - - || Pega) |-+ |
(Az.gfp, pe, sl - [l pe,.)

Unlike what this mathematical formalization suggests, our
implementation shares the variables’ domains across warps.
In practice, domains are reloaded at each iteration to allow
warps to exchange information during their local fixpoint
computations. Although this mathematical definition differs
from the implementation, it is simpler for presentation pur-
poses and was shown equivalent in (Talbot, Pinel, and Bou-
vry 2022).

The warp-centric fixpoint loop yields an average speed-up
of approximately 10% in the number of nodes explored per
second. Correctness is established by the following proposi-
tion.

Proposition 1. The following two greatest fixpoints are
equal:

gfp, veyll - - - || Pe,, = wpropagate(d,{ci,...,cn})

Proof. The warp-centric fixpoint is merely a scheduling
strategy. As shown in (Talbot, Pinel, and Bouvry 2022),
the parallel greatest fixpoint is independent of the schedul-
ing strategy, provided that the strategy is fair. The pro-
posed warp-centric scheduling is fair, since every constraint
is eventually propagated. Therefore, both fixpoint formula-
tions compute the same greatest fixpoint. 0

4 Search on GPU

The Challenge The most successful kind of parallelism
used in constraint programming solvers consists in divid-
ing the search among the threads (e.g. assigning one thread
per subproblem), or repeating it differently in a portfolio
approach (e.g., using different split functions) (Gent et al.
2018). In both cases, the threads are working on a local copy
of the problem. Due to its loose requirements on communi-
cation among threads, EPS is a promising approach to par-
allelize search on GPUs. However, it must be adapted to re-
duce its memory footprint.

Indeed, as revealed in the experiments, the decomposi-
tion of some instances into TCN can significantly increase
the number of variables and constraints, leading to problems
where the domain function d can be as large as S6MB?—
although the average is 2MB and median is 110KB. There-
fore, it is not reasonable to solve one subproblem per thread
as it takes 68GB (256 threads-per-block x 132 blocks x
2MB) on average to store the domains of variables. When
performing parallel propagation within a block, we can re-
duce the memory footprint to 264MB (132 x 2MB) on av-
erage and up to 7.4GB in extreme cases. EPS introduces
another challenge by generating a priori the subproblems
which take 8GB (30 x 264MB) on average and 222GB
(30 x 7.4GB) for the largest instance. This is without ac-
counting for the necessary solver’s internal data structures

20n yumi-dynamic model with the p 5 GG_GGG_yumi -
grid setup 5 5 =zones.dzn data file.

Algorithm 2: Propagate-and-search on a single block

function minimize™ (d, C, opt)
d(opt.z) < d(opt.z) N [—o0, opt.ub — 1]
propagate®™(d, C)
if isasn®"* (d) then
opt.update(d)
else if —isbot"™" (d) then
vd € 5>’pli1§blk(d)7 minimize®™(d’, C, opt)
end if
end function

for, e.g., backtracking. Furthermore, we wish our solver to
run on commodity GPUs which have more limited global
memory.

Our Solution For those reasons, we avoid storing all sub-
problems a priori and propose the dive and solve algorithm,
a form of lazy EPS, generating subproblems on-demand.
Dive and solve consists of two phases: a backtrack-free div-
ing phase, where a block dives in the search tree until it
reaches the next subproblem to be solved, and a solving
phase where the subproblem is solved by a single block
using parallel propagation and backtrack search. The algo-
rithm is entirely ran on the GPU—both diving and solving—
without returning to the CPU between phases. For concise-
ness, we mix code and mathematical notation, for instance,
we use D for the type of the domain function. We describe
the solving phase, then the diving phase, and combine them
to obtain the divesolve algorithm.

Solving phase The solving algorithm is very similar to
manimize introduced earlier. The main difference is to share
the best objective upper bound found so far among the
blocks running in parallel. We rely on the following C++
data structure to store the objective variable z € X, the best
solution found so far by the block best € D and the best
upper bound ub € Z found so far among all blocks:

struct Opt {
X z; // objective variable
atomic<int>& ub; // global best bound
D best; // block best solution
void update (const D& d) {
best = d;
ub.fetch_min (1lb (best (z)));
}
bi

The function minimize®™(d, C, opt) (Algorithm 2)
searches for a solution minimizing opt.z and below the
current global upper bound opt.ub. In the following al-
gorithms, the functions annotated by blk are executed in
parallel by a block, while individual statements are executed
by one thread (as if guarded with if(threadIdx.x == 0)).
When a block reaches a solution, it calls opt.update(d) to
update its best solution and the global upper bound. In the
other direction, each block constrains the objective variable
with opt.ub before propagating—instead of using best(z)

as in the sequential version. The functions isasn®*, isbot



and split®™* leverage block-parallelism, but due to limited
space and because iterating an array in parallel is standard,
we do not show them.

Diving phase Let the root node be at depth O of the tree
and the subproblems be the nodes at depth D € Z. We in-
dex the subproblems from 0 to 2° — 1. The blocks solve the
subproblems in order from 0 to 2” — 1, hence starting with
the first blockDim.x subproblems. We introduce three oper-
ations to manage the assignment of subproblems to blocks.

The next operation atomically increments a shared
counter nextsub € Z and returns its value. When a block
has completly explored the subtree of its current subprob-
lem, it requests the next subproblem, called the target. Since
the next operation is atomic, each block explores different
subproblems and all subproblems are explored.

The dive operation allows a block to reach its target sub-
problem from root. After each call to split, this operation
decides whether to take the left or right branch.

The skip operation allows a block to skip some subprob-
lems when it encounters a satisfiable or unsatisfiable node
along the path to its target subproblem.

The implementation of those operations essentially relies
on bitwise arithmetic and two atomic operations. The main
observation is that the binary representation of a subproblem
index is also the path in the search tree to reach that subprob-
lem. As an example, we annotate the following tree of depth
D = 3 with the binary representation of each path.

Suppose we have two blocks running concurrently. They
start by solving the first and second subproblems. The first
block finishing will start solving the third subproblem. Let
target = 2 be a variable storing the index of the third sub-
problem. Its binary representation is 0...0010, but only the
last 3 bits 010 are of interest. They represent the path from
the root to the target:

?10 left branch
0 %O right branch
Ol(T) left branch

The dive operation consists in moving this pointer from left
to right and extracting the corresponding bit.

Now, let us suppose the white node on the path to 010
is unsatisfiable. It means that both 010 and 011 must be
skipped since they have a common unsatisfiable ances-
tor. In general, if we detect (un)satisfiability along a path
bi...b;...bp, we can skip all subproblems prefixed by

1)

b1 ... b;. To achieve it, it is sufficient to increment the integer
represented by by . .. b;, and set all bits b, withi < k < D to
0. On our example, the path to the failed intermediate node

Algorithm 3: Dive on a single block

function diveblk(d, C, path)
while path.rd > 0 do
propagate®™ (d, C)
if isasn®™ (d) V isbot " (d) then
path.skip()
return
else
d « splitdive®™ (d)[path. dive()]
end if
end while
end function

is 01 = 1, thus incrementing it gives 10 = 2. By completing
10 with one 0, we obtain 100 = 4 which is the path to the
fifth subproblem, effectively skipping the failed subtree.

The following Path structure contains all information to
explore all subproblems (in parenthesis the initialization val-
ues). All attributes are local to each block but for next sub
which is shared among blocks. The depth D is initialized to
[log,(blockDim.x x 300)]. Because we are exploring more
nodes due to bound propagation, we use 10 times more sub-
problems than EPS (which uses 7" x 30).

struct Path {
int D;
atomic<uint32_t>& nextsub; (blockDim.x)
uint32_t target; (blockIdx.x)
int rd; (D)

void next () {

target = nextsub++;

rd = D;
}
int dive () {

-—-rd;

return (target & (uint32_t{l}<<rd))>>rd;
}
void skip() {

nextsub.fetch_max (

((target >> rd) + uint32_t{l}) << rd);
}
bi

The variable rd maintains the remaining depth before reach-
ing the target subproblem. In dive, the remaining depth is
used to efficiently extract the bit indicating whether to turn
left or right in the current layer. In skip, it is used to ob-
tain the path to the subtree to be skipped (target > rd),
increment it and then completing it with zeros using < rd.

The diving phase is described in Algorithm 3. We skip
subproblems whenever we hit a leaf node—either a solu-
tion or failed node. We write splitdive’™ the splitting func-
tion used in the diving phase to emphasize the fact it can
be different from the one used in minimize®™. The func-
tion dive®™ is backtrack-free as only one branch returned
by splitdive®™ is ever considered—note that we use array
indexing splitdive®™ (d)[i] where i € {0,1} to retrieve the
first or second branch.



Algorithm 4: Dive-and-solve on a single block

Algorithm 5: Dive-and-solve across blocks

function dz’vesolveblk(d, C, path, opt)
while path.target < 2P do
d «+d
dive®™® (d', C, path)
if path.rd = 0V isasn(d") then
minimize®™ (d’, C, opt)
end if
path.next()
end while
end function

The blocks sharing a common subpath to their targets will
independently propagate the same nodes, resulting in du-
plicated computations. However, as revealed in the experi-
mental evaluation, the time taken to dive is insignificant in
comparison to the overall solving time, and it avoids time-
consuming and tricky synchronization among blocks.

An important property of the diving phase is to always
generate the same tree leaves regardless of what happens in
minimize®™ . For example, modifying the objective variable
during diving could modify the set of subproblems, and new
subproblems on already visited paths could be generated.
Similarly, splitdive®” must be functional and must not con-
tain an internal state, and therefore rules out dynamic search
strategies such as wdeg/dom (Boussemart et al. 2004) during
diving.

Dive and Solve The function divesolve®* (Algorithm 4)
is ran by each block until no subproblem is left to be solved
(path.target > 2P). If dive®™ reaches a subproblem, or if
it finds a solution along the way, we call minimize®*. In
the first case, it solves the subproblem using a backtrack-
ing algorithm and parallel propagation. In the second case,
it updates the best upper bound and best solution found so
far, and returns immediately. We reinitialize d’ to the root
node d each time we solve a new subproblem.

Algorithm 5 shows a CUDA kernel that takes a TCN
(d, C') shared among all blocks and two arrays paths and
opts of size B € 7Z containing the data of each block ¢ < B.
The number of blocks per SM is chosen using CUDA occu-
pancy calculator, which is usually 4 blocks per SM on our
benchmark. We reduce the number of blocks suggested if we
exceed the available global memory.

Theorem 2. The algorithm divesolve?™ is sound and com-
plete for any number of blocks and subproblems depth D.

Proof. We have shown in (Talbot, Pinel, and Bouvry 2022)
the propagation fixpoints of minimize®™* and minimize on
any (d,C) are the same. The blocks can only communi-
cate through opt.ub, which might prune some solutions of a
subproblem. However, since we are seeking for the smallest
value of z, it is safe to prune all subtrees where z > opt.ub:
a block has already found a solution with z = opt.ub.
Next, we must show that S covers all nodes at depth
D of the search tree. Since path.next() atomically incre-
ment nextsub, divesolve®” must enumerate all subprob-

function divesolved™%(d, C, B, paths, opts)
for parallel blockldz.z € {0,...,B — 1} do
divesolve®™ (d, C, paths[blockldx.x], opts[blockIdz.x])
end for
synegrid()
end function

(wait for all blocks to terminate)

lems from 0 to 20 — 1. If dive’™ reaches a target sub-
problem, all solutions are preserved since propagate®™ and
splitdive®™ are both sound and complete. If an intermediate
node along a path is a solution or a failure, then all subprob-
lems s, ..., s below that node can be safely skipped. The
function skip returns the next subproblem sj1. As all sub-
problems s; with ¢ < k have been assigned to some blocks,
we can update nextsub to k + 1 using an atomic maximum
operation.

Since divesolve®™ covers all subproblems, and be-

cause minimize®™ is sound and complete, there must be
one subproblem containing the best solution. Therefore,

divesolve?™™ is sound and complete. O

5 Experimental Evaluation

We evaluate our approach on the 100 instances of the 2024
MiniZinc Challenge (Stuckey et al. 2014). For all instances,
the MiniZinc model is converted into a simpler format called
FlatZinc as it is done during the MiniZinc challenge. We
remove one instance detected unsatisfiable during the con-
version from MiniZinc to FlatZinc, and one instance from
the problem yumi-dynamic too large to be decomposed into
TCN?3. We run the experiments on the H100 GPU described
in Section 2. Unless specified otherwise, we rely on the
search strategies specified in the MiniZinc models for both
split®™ and splitdive®™ for all experiments. We set the
timeout for each instance to 20 minutes; it includes the
FlatZinc and TCN decompositions, preprocessing, diving
and solving. All experiments are run on Turbo v1.2.8* with
all the optimizations described in this paper.

Analysis of Ternary Constraint Networks As an abso-
lute reference, we take the constraint networks generated by
the MiniZinc to FlatZinc conversion for Choco, which does
not decompose global constraints. We measure the impact
of the decomposition into flat constraint networks (FCN)—
which is FlatZinc without any global constraint including el-
ement constraints (e.g. array_int element)—and the
subsequent TCN decomposition. The average preprocessing
time within Turbo (TCN decomposition and preprocessing)
is 11.06s with a standard deviation of 31.53s. The median

3pi97GSGS7GSGSGiyumiigridisetupi7777—
zones.dzn. Among the 41 solvers’ configurations (all cate-
gories) participating in the challenge, 15 crashed on this instance,
and only 4 could find a solution.

*Code is available here: https:/github.com/ptal/turbo/tree/
2aai2026



Instances CN Variables Constraints
average median stddev  max average median stddev  max
all (96) FCN 15.79x 1.76x 40.11x  273.15x  84.82x  3.35x 312.46x  1981.40x
TCN 64.77x  4.74x 211.97x  1316.34x 152.43x  4.46x 602.61x 3912.41x
w/o yumi-dynamic FCN  8.78x 1.74x 18.41x 111.62x  24.62x 2.97x 69.88x  525.40x
92) TCN 2342x  4.45x 50.74x  336.28x  37.75x  4.34x 115.71x  731.63x

Table 1: Increase in size of FCNs and TCNs relative to Choco constraint networks on 96 instances.

TCN View-based

Nodes per second 103036 14623
FP iterations per node 13.9 6.1
Propagators mem. (MB)  0.69 10.33
Variables mem. (KB) 286.5 76.6

Table 2: TCN vs view-based representation of propagators.

time is 0.63s and 14/98 instances take more than 10 seconds
to be converted and preprocessed (maximum is 179.61s).

On Table 1, we notice the decomposition into FCN is al-
ready costly, averaging an increase in variables of 15.79x
and constraints of 84.82x. Further decomposing in TCN
yields 4 times more variables and 2 times more constraints
than FCN on average. Nonetheless, the TCN median in-
crease is about 4.5x in both variables and constraints, which
is a small increase considering TCNs only contain ternary
constraints. The standard deviation indicates a high vari-
ability due to outliers, especially due to the instances yumi-
dynamic which contain many global constraints. Removing
these instances divides by about 3 the average variables in-
crease and by 4 the constraints increase.

Perspective 1 The element constraint is crucial on some
instances, in particular those with t able global constraints.
As its decomposition substantially increases the size of the
network, it would be interesting to support the element con-
straint directly, not only to improve propagation, but also for
its compact representation. More generally, we could revisit
the decomposition of global constraints for TCN.

Fixpoint Computation We claimed in Section 3 that
propagators for TCN are more efficient on GPU than view-
based propagators. To validate our claim, we evaluate both
TCN and view-based propagators on GPU on a restricted set
of 20 small to large instances (1 for each problem class). On
Table 2, we compare their raw efficiency in terms of nodes
per second and fixpoint iterations per node. TCN propaga-
tion explores around 7x more nodes per seconds on aver-
age than view-based propagation. Interestingly, although the
TCN decomposition is larger, the bytecode representation is
so compact that it uses significantly less memory than view-
based propagators. However, the store of variables is larger.

Perspective 2 In terms of fixpoint iterations, TCN propa-
gation converges almost 2.5x more slowly than view-based

Strategy #idle average median stddev

user-defined 26 85% 95% 19%
first-fail 21 85% 96% 20%
random 10 83% 91% 27%

Table 3: Impact of split strategy during diving on load bal-
ancing.

propagation. Therefore, sorting more intelligently propaga-
tors, taking into account their dependencies (e.g. p; triggers
p2 which triggers ps, etc.), could accelerate the convergence,
with an opportunity to double the number of nodes explored.

Time Distribution Most of the time spent on GPU
consists in computing propagate®™. It averages 93% of
the overall GPU time with a standard deviation of 18%
and a median of 98%. The rest is spent in the search
(split®™* isasn®™® isbot®™). When comparing the diving
phase against the solving phase, we find that divesolve®™®
spends an average of 0.01% diving with a standard deviation
of 0.05%. Therefore, repeating propagation among blocks
during diving does not incur a significant overhead.

Perspective 3 One of our current focus is to improve the
parallel fixpoint algorithm. However, there is a trade-off
between the time spent to schedule propagators and the
time spent to execute them. So far, our attempts to design
parallel dynamic scheduling algorithms increased the time
spent overall, although it reduced the number of propagators
called.

Diving Split The strategy splitdive®* is important to ob-
tain effective load balancing, i.e. there are as few as possible
idle blocks when we reach the timeout. By default, we use
the same strategy than split®"* which is the one defined in
the constraint model by the user. As shown on Table 3, this
strategy leads to load imbalance on 26 instances. We test
two other strategies: selecting the variable with the small-
est domain known as first-fail and random selection; the do-
mains are split in the middle. The random selection strategy®
has better load balancing, with 10 instances terminating with
idle blocks. The average proportion of idle blocks at the end
of computation is very high at around 85% for all strategies.
It highlights that whenever one block becomes idle, many
more typically follow.

SRandom seed is 0, similar results with seeds 2, 42, 10000.



Model Architecture #SMs INT32cores RAM L1 cache #shmem avgNPS

Quadro RTX 5000 Max-Q  Turing (7.5) 48 3072 16GB 64KB 19 94k

RTX A5000 Ampere (8.6) 64 4096 24GB 128KB 24 207k

V100 Turing (7.0) 80 5120 16GB 128KB 24 212k

H100 Hopper (9.0) 132 8448 96GB 256KB 46 458k

Table 4: Scalability tests with GPUs of three different generations.

Solver MZN XCSP3 Turbo Other 6 Conclusion
OR-Tools Par 266.7 97 0% 81.6% This paper describes Turbo: a discrete constraint solving al-
Choco Par 190.8 80 6.1% 72.4% gorithm fully executing on GPU. We show that an algo-
OR-Tools 119.9 48 112% 58.2% rithmically simple but massively parallel solver can com-
Choco 493 37 235% 28.6% pete with an algorithmically sophisticated but sequential
Turbo 45.8 35 na na CPU solver. We discussed several perspectives but believe

Table 5: Overall performance.

Perspective 4 EPS adjusts the cutting depth depending on
the unsatisfiable problems encountered. It is possible be-
cause subproblems are generated a priori. Future research
could focus on an efficient algorithm to adjust the depth on-
the-fly during diving to improve load balancing. The chal-
lenge is to achieve it without a costly synchronization over-
head.

Overall Performance Turbo is almost on-par with Choco
v4.10.18, but still lags behind OR-Tools v9.9 which is an
hybrid solver between CP and SAT. We run both solvers on
a processor AMD Epyc ROME 7H12@2.6GHz (64 cores)
sequentially and in parallel. The parallel versions of each
solver using 64 threads outperform Turbo.

On Table 5, we rank each solver using the MiniZinc
scores, taking into account the time to find the objective
value, and XCSP3 scores (Audemard et al. 2020) which does
not. We also give a 1-to-1 comparison (only objective values
are compared): Choco is strictly better than Turbo on 28 in-
stances, and Turbo outperforms Choco on 23 instances. The
best-in-class OR-Tools does not completely surpass us as
we find better bounds on 11 instances. Turbo usually per-
forms better on problems with few or no global constraints,
although there are exceptions (e.g. Turbo is worse on por-
tal which has no global constraint and is better community-
detection which has two kinds of global constraints).

Scalability Testing We evaluate Turbo on 4 NVIDIA
GPUs from different generations, all running 64 INT32
cores per SM. Table 4 gives a description of the GPUs used,
the number of instances with the domains stored in shared
memory (#shmem), and the average number of nodes-per-
second (NPS) explored. The results show superlinear scal-
ing in NPS w.r.t. INT32 cores, but for V100 due to an older
compute capability (7.0) and more limited RAM. Superlin-
ear scaling is mostly due to the upgraded architecture and the
increased number of problems that can be stored in shared
memory, effectively reducing global memory accesses.

many more can be explored such as GPU-accelerated con-
tinuous constraint solving. Moreover, as our solver fully
runs on GPU, machine learning components could be inte-
grated more efficiently as they are also usually accelerated
on GPUs. In particular, neural network prediction time was
identified as a bottleneck in previous attempts (Cappart et al.
2021).
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