
Constraint Programming with External Worst-Case

Traversal Time Analysis

Constraint Programming 2023

Pierre Talbot, Tingting Hu, Nicolas Navet

pierre.talbot@uni.lu

28th August 2023

University of Luxembourg



Context of the Work

Collaboration with Nicolas Navet and Tingting Hu.

• In the research group Critical Real-Time Embedded Systems.

• Connection with the automotive industry (BMW, Mercedes-Benz, Renault, etc.)

1



Automotive Network

2



The Deployment Problem

• Given a hardware graph ⟨H, L⟩ with 3 ECUs and 1 switch and a software graph ⟨S ,Com⟩
with 5 services and 5 communications.

• Find a (good) deployment function d : S → H such that all communications among

services meet their deadlines.

Switch1ECU1 ECU3

ECU2

3



The Deployment Problem

• Given a hardware graph ⟨H, L⟩ with 3 ECUs and 1 switch and a software graph ⟨S ,Com⟩
with 5 services and 5 communications.

• Find a (good) deployment function d : S → H such that all communications among
services meet their deadlines.

Switch1ECU1 ECU3

ECU2

3



State of the art (in real-time field)

• Simulation: simulate the communications across the network a large number of times

with various parameters to show a deployment function works “most of the time”.

• Formal methods (our focus): worst-case traversal time (WCTT) analysis guarantees the

end-to-end delay of network packets, but at the cost of being an incomplete analysis.

Problem: enumerating and analyzing all deployment functions is too
time-consuming (about 1.5s per analysis).

4



Our Approach

• Proposal: Represent WCTT as a constraint problem to prune early unsatisfiable

deployment functions.

• ⇒ Too difficult: 30 years+ of research in WCTT (network calculus).

• ⇒ From the viewpoint of the company: WCTT is already implemented, optimized and

working.

• ⇒ Represent only the CP-friendly part of the problem and integrate WCTT as an external

function called during solving.

• ⇒ Extract information from WCTT analysis when it fails and dynamically add it to the

model to help searching .

5



Contributions

• In distributed embedded system: A multi-objective constraint model of the deployment

problem over Ethernet network.

• In constraint programming: A new multi-objective optimization algorithm cusolve mo

integrating external function calls during solving.

• A new use-case of abstract interpretation to help understanding the problem, and provide

proofs of correctness of the algorithms.

6



Related Work

Controller Area Network (CAN)

• WCTT over CAN network is simple and actually exact.

• Various approaches to tackle this problem such as with genetic algorithm, MIP, constraint

programming.

• Both the constraint part and the analysis part are represented in the model.

Only recently Kugele et al. (2021) considered the deployment over Ethernet networks with

SMT solvers and simulation—but small network (3 CPUs), generate-and-test algorithm, and no

constraint model provided.

7



Abstract Interpretation View of the Deployment Problem

7



Concrete Domain

The concrete domain is the set D♭ of all deployment functions satisfying the deadline

constraints. Might be too hard to compute or even uncomputable.

Figure 1: Concrete domain D♭

8



Under-approximating Abstract Domain

WCTT analysis under-approximates the concrete domain (sol(U) ⊆ D♭). It will only accept valid

deployment functions, but might reject valid ones.

Figure 2: WCTT domain sol(U) (red)

WCTT formally

Let uf : asn→ {true, false} be the external WCTT analysis, then:

sol(U) := uf −1(true) = {asn ∈ asn | uf (asn) = true}

9



Under-approximating Abstract Domain

WCTT analysis under-approximates the concrete domain (sol(U) ⊆ D♭). It will only accept valid

deployment functions, but might reject valid ones.

Figure 2: WCTT domain sol(U) (red)

WCTT formally

Let uf : asn→ {true, false} be the external WCTT analysis, then:

sol(U) := uf −1(true) = {asn ∈ asn | uf (asn) = true}

9



Sandwiching the Problem

Use a CP model O over-approximating the concrete domain:

sol(U) ⊆ D♭ ⊆ sol(O)

⇒ CP helps pruning unproductive assignments so we call WCTT only on promising

assignments.

10



Over-Approximating Constraint Model

10



Example

Switch1ECU1 ECU3

ECU2

11



Constraint Model of the Deployment Problem

• Constants: Set S = {s1, . . . , sn} of services and H = {h1, . . . , hm} of CPUs.

• Variables: d(si ) = H, initially each service si can be allocated on any CPU.

• Constraint 1: Ensure the utilization rate of each processor (function hc) is not exceeded:

∀h ∈ H,
∑

s∈d−1(h)

sc(s) ≤ hc(h)

where sc : S → Z is the CPU utilization of the services.

• Constraint 2: Utilization rate of each network link.

∀ℓ ∈ L,
∑

c∈Com

com(c, ℓ) ≤ lc(ℓ)

where the function com(c, ℓ) returns the cost on the link ℓ of communication c, and is defined by:

com(c, ℓ) =

{
cc(c) iff ℓ ∈ path(d(x), d(y)), c = (x , y)

0 otherwise

12



Constraint Model of the Deployment Problem

Multi-objective Optimization Problem

• Extensibility: Minimize the maximum utilization rate of a processor:

min max
h∈H

∑
s∈d−1(h)

sc(s)

• Extensibility: Same with network link.

• Cost: Minimize the number of processors used:

min |d(S)|

13



Algorithms

13



Two Phase Algorithm

Algorithm

1. Compute the Pareto front of the CP model O.

2. Filter the solutions of O passing the WCTT analysis.

But it can prune solutions from WCTT , so the filtered Pareto front is not necessarily optimal:

(1a) Compute Pareto front:

A

14



Two Phase Algorithm

Algorithm

1. Compute the Pareto front of the CP model O.

2. Filter the solutions of O passing the WCTT analysis.

But it can prune solutions from WCTT , so the filtered Pareto front is not necessarily optimal:

(1b) Compute Pareto front:

C

14



Two Phase Algorithm

Algorithm

1. Compute the Pareto front of the CP model O.

2. Filter the solutions of O passing the WCTT analysis.

But it can prune solutions from WCTT , so the filtered Pareto front is not necessarily optimal:

(2) Filtered Pareto front:

14



Two Phase Algorithm

Algorithm

1. Compute the Pareto front of the CP model O.

2. Filter the solutions of O passing the WCTT analysis.

But it can prune solutions from WCTT , so the filtered Pareto front is not necessarily optimal:

What we wanted to obtain:

14



Two Phase Algorithm Fixed?

We can keep the intermediate solutions generated, then when filtering, if any solutions is

discarded by WCTT, we reconstruct the previous Pareto front without this solution.

Filtering Pareto front:

C

15



Two Phase Algorithm Fixed?

We can keep the intermediate solutions generated, then when filtering, if any solutions is

discarded by WCTT, we reconstruct the previous Pareto front without this solution.

Filtering Pareto front:

A

15



Two Phase Algorithm Fixed?

We can keep the intermediate solutions generated, then when filtering, if any solutions is

discarded by WCTT, we reconstruct the previous Pareto front without this solution.

Can still discard optimal solutions (suppose point B dominates A but is dominated by C):

B

A
C

Therefore, we must call WCTT during solving for completeness.

15



Integrated Algorithm: usolve mo

function usolve mo(O, uf , ⊔, opt)
F ← {}
asn← solve(O)

while asn ̸= {} do
if uf (asn) = true then

F ← F ⊔ {asn}
O ← O ∧ opt(asn)

else

O ← O ∧ ¬asn
end if

asn← solve(O)

end while

return F

end function

⇒ Proposition. The Pareto front computed is optimal w.r.t. sol(U). 16



Conflicts Generated by WCTT

16



Conflicts from uf

The WCTT analysis returns which communications fail to pass the analysis.

⇒ Generate new constraints based on this information.

⇒ uf : asn→ C .

⇒ Requirement: if uf (asn) ̸= true, then uf (asn)⇒ ¬asn.

Examples of Conflicts

Suppose the communication between the services x and y fail:

• Forbid source (FS): d(x) ̸∈ {asn(x), asn(y)}
• Forbid target (FT): d(y) ̸∈ {asn(x), asn(y)}
• Decreasing hops (DH): |path(d(x), d(y))| < |path(asn(x), asn(y))|

17



Conflicts are Generally not Over-approximating

None of the conflicts presented are over-approximating, i.e., adding them to O might prune

some solutions. We propose the algorithm cusolve mo to use conflicts as heuristics without

losing completeness.

Example:

Switch1ECU1 ECU3

ECU2

18



cusolve mo: example

Switch1ECU1 ECU3

ECU2

Switch1ECU1 ECU3

ECU2

Switch1ECU1 ECU3

ECU2

Switch1ECU1 ECU3

ECU2

Switch1ECU1 ECU3

ECU2

Switch1ECU1 ECU3

ECU2

(...)

A

D

C F

EB

19



cusolve mo

function cusolve mo(F , O, C , uf , ⊔, opt)
asn← osolve(O ∧ C)

if asn ̸= {} then
co ← uf (asn)

if co = true then

F ← F ⊔ {asn}
O ← O ∧ opt(asn)

cusolve mo(F , O, C , uf , ⊔, opt)
else

cusolve mo(F , O, C ∧ co, uf , ⊔, opt)
cusolve mo(F , O, C ∧ ¬co ∧ ¬asn, uf , ⊔, opt)

end if

end if

return F

end function

⇒ Proposition. The Pareto front computed is optimal w.r.t. sol(U).
20



Experiments

20



Description of the Experiments

Setting

• AMD Epyc ROME 7H12 processor (64 cores, 280W).

• solve implemented by GeCode 6.3.0 in parallel mode with 8 cores (16 threads),

timeout 30 minutes.

Experiments

• Instances derived from a realistic automotive Ethernet network consisting of 19 network

devices (14 ECUs and 5 switches).

• 5 instances of 50 services, 5 instances of 75 services and 8 instances of 100 services.

• For each of the 18 instances, we generated 10 versions where the sum of all computational

requirements is 20%, 40%, 60%, 80% and 90% of the total computational capacity of all

ECUs with a uniform distribution among services.

21



Two Phase Algorithm

• Low number of services (50): 14/15 instances have the same hypervolume before and

after filtering.

• For 75 and 100 services: 24/30 instances with an hypervolume within 3% of the unfiltered

hypervolume.

• Still, some instances with filtered hypervolume below 75% of the unfiltered hypervolume.

22



Cumulated Hypervolume Score

Cumulated hypervolume score for each experiment over all instances.

DH∧ DH∨ DML MO UF D1L FS∨ FT∨ NA FST∨ FS∧ FT∧ FST∧

0

10

20

30

40

S
co
re

uf conflicts

uf solutions

23



Best Hypervolume

Number of times each experiment computed the best hypervolume.

DH∧ DH∨ FST∧ FST∨ DML D1L FS∧ FS∨ MO UF NA FT∧ FT∨

0

5

10

15

B
es
t
h
yp

er
vo
lu
m
es

24



Conclusion

• Problems from the industry are often unpure.

• Need to reuse existing code, external blackbox functions.

• Rigorous and generic algorithm for CP + under-approximating external
function.

25



Ad: Recruiting a Postdoc

GPU + CP + Abstract Interpretation

(At the university of Luxembourg, 80k€ gross salary, 16 months with extension possible).

26


