2024 WRAPPED

Francesca Guffanti

University of Luxembourg

15th January 2025

Publications:

- Left adjoint to precomposition in elementary doctrines, *Theory and Applications of Categories*, Vol. 41, 2024, No. 15, pp 493-515 (from chapter 4 of my PhD thesis, published in May);
- Adding a constant and an axiom to a doctrine, *Mathematical Logic Quarterly*, Vol. 70, Issue 3, pp 294–332, 2024 (from chapter 2 of my PhD thesis, published in October).

Preprints:

- Quantifier-free formulas and quantifier alternation depth in doctrines, with Marco Abbadini;
- Freely adding one layer of quantifiers to a Boolean doctrine, with Marco Abbadini.

Talks:

- Henkin's Theorem for doctrines, Groupe de travail "Semantique", IRIF February 7th, Paris;
- Quantifier alternation depth in universal Boolean doctrines, with Marco Abbadini, Local seminar of the Logic group, Universita' degli Studi di Padova - 2nd May, Padua;
- Quantifier-free formulas and quantifier alternation depth in doctrines, 5th ItaCa Workshop, Universita' degli Studi di Padova December 19th, Padua.

Conferences attended:

- Abstract Interpretation Workshop, University of Luxembourg, June 19-21;
- **CT&CatAlg** *Workshop on the occasion of Enrico Vitale 60th birthday*, University of Milan, September 9-10;
- ECCL24 A workshop dedicated to Pino Rosolini on the occasion of his 70th birthday, University of Genoa, September 12-13;
- ItaCa 5th ItaCa Workshop, University of Padua, December 19-20.

Conferences attended:

- Abstract Interpretation Workshop, University of Luxembourg, June 19-21;
- **CT&CatAlg** Workshop on the occasion of Enrico Vitale 60th birthday, University of Milan, September 9-10;
- ECCL24 A workshop dedicated to Pino Rosolini on the occasion of his 70th birthday, University of Genoa, September 12-13;
- ItaCa 5th ItaCa Workshop, University of Padua, December 19-20.

Teaching:

- (Conclusion of) exercise session for Linear Algebra 1 Mathematics (head of the course: I. Nourdin);
- Office Hours for Linear Algebra 1 Computer Science and Physics (head of the course: A. Perucca).

Boolean algebras		Classical propositional logic	
First-order Boolean doctrines	:	Classical first-order logic	
$Ctx^{\mathrm{op}} \longrightarrow BA$			
$\vec{x} \longmapsto \operatorname{WFF}(\vec{x})$		$ i \in \alpha(\vec{x}) $	
(x) $WFF(x)$		$iii \in (x=1) \lor (x \ge 2)$	

	Boolean algebras		Classical propositional logic
First-or	First-order Boolean doctrines		Classical first-order logic
Ctx^{op} –	\longrightarrow BA		
x	$\mathrm{WFF}(ec{x})$		$ i \in \alpha(ec{x}) $
ÿ	$\mathrm{WFF}(ec{y})$		
(x)	$\mathrm{WFF}(x)$		$iii \in (x=1) \lor (x \ge 2)$
(y_1, y_2)	$\mathrm{WFF}(y_1,y_2)$		

	Boolean algebras			Classical propositional logic
	First-order Boolean doctrines		:	Classical first-order logic
	Ctx ^{op} ——	\longrightarrow BA		
Ŧ	<i>x</i> (<i>y</i>) <i>y</i>	WFF(\vec{x}) $\downarrow_{[\vec{t}(\vec{y})/\vec{x}]}$ WFF(\vec{y})		$ in lpha(ec{x}) \\ \downarrow \\ in lpha(ec{t}(ec{y})/ec{x}) $
	(x) (y_{1}, y_{2})	WFF(x) \downarrow WFF(y_1, y_2)	Ξ	$egin{array}{lll} i & (x=1) \lor (x \geq 2) \ & \downarrow \ & \downarrow \ & (y_1+y_2=1) \lor (y_1+y_2 \geq 2) \end{array}$

Quantifiers define Galois connections!

$$WFF(x, y) \xleftarrow{dummy}{\exists x} WFF(y)$$
$$\beta(y) \xleftarrow{} \beta(y)$$
$$\alpha(x, y) \longmapsto \exists x \alpha(x, y)$$

$$WFF(y) \xrightarrow[dummy]{dummy} WFF(x, y)$$
$$\forall x \alpha(x, y) \xleftarrow{} \alpha(x, y)$$
$$\beta(y) \longmapsto \beta(y)$$

 $\exists x \alpha(x, y) \vdash \beta(y) \iff \alpha(x, y) \vdash \beta(y)$

 $\beta(y) \vdash \alpha(x,y) \iff \beta(y) \vdash \forall x \alpha(x,y)$

	Boolean algebras	:	Formulas in a propositional language wrt a theory
First-orde	r Boolean doctrines	:	Fmlas in a predicate language wrt a fo. theory
new ¹ :	Boolean doctrines	:	Quantifier-free fmlas modulo a fo. theory
to do:	???	:	Sets $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$ of fmlas with $QAD \leq n$ modulo a fo. theory

¹jww Marco Abbadini, University of Birmingham

	Boolean algebras	:	Formulas in a propositional language wrt a theory
First-order	Boolean doctrines	= : _	Fmlas in a predicate language wrt a fo. theory
new ¹ :	Boolean doctrines	:	Quantifier-free fmlas modulo a fo. theory
to do:	???	:	Sets $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$ of fmlas with $QAD \leq n$ modulo a fo. theory

Consequence: algebraic proof of *Herbrand's Theorem* in f.-o. logic that also allows for the empty model.

¹jww Marco Abbadini, University of Birmingham

Take further steps in Abstract Constraint Programming, using the formalization given by lattice theory:

- we interpreted some function symbols in the abstract domain of important examples (e.g. Integers Upper/Lower Bound Abstraction, Floating-point Upper/Lower Bound Abstraction, their correspondent Interval Abstraction...);
- to do: interpret some predicate symbols in the same abstract domains;
- to do: define new abstractions from existing ones (e.g. using Hoare/Smyth construction).

• Find a postdoc :)

- Find a postdoc :)
- with Pierre: finish our paper on Abstract Constraing Programming;
- with Marco Abbadini: correct our first preprint according to the advices of the referee, and continue to characterise the layers of QAD;
- improve and resubmit the preprint from chapter 3 of my PhD thesis.