
Special Meeting 2
Multi-GPU Parallel Constraint 

Programming
Hakan Hasan

20 June 2025



Constraint programming

 An efficient technique for solving a variety of combinatorial problems 

(typically in the NP-complete and NP-hard classes).

 In CP a problem is defined over variables that take values in domains and 

constraints which restricts the allowed combination of values.



Constraint programming

 CP uses for each constraint an algorithm that removes values of variables that 

are inconsistent with the constraint. These algorithms are called while a 

domain is modified.

 Then, a search algorithm such as a backtracking or branch-and-bound 

algorithm is called to find solutions.



The problem

 Current solvers can handle instances with hundreds of thousands variables and 

millions of constrains.

 But we want to solve even larger constraint problems!

 The natural next step in the development of ever more powerful constraint 

optimization methods is the use of parallelism.



Embarrassingly parallel search

 Method for solving CP problems in parallel based on embarrassingly parallel 

computations.

 When having 𝑘 workers EPS proposes to split the problem into a huge number 

of sub-problems (e.g., 30𝑘) and give the subproblems successively and 

dynamically to the workers.

 EPS expects that for each worker the sum of the resolution time of its 

subproblems will be equivalent ⇒ load balancing is automatically obtained in 

a statistical sense.



Key concepts

 Massive static decomposition

 Loose communication

 Non-intrusive implementation



Problem decomposition

 The decomposition challenge is to find the depth at which the search frontier 

contains approximately 𝑝∗ nodes.

 EPS statically decomposes the initial problem into a huge number of          

subproblems that are consistent with propagation.



Top-Down decomposition method

 Starts from the root node and incrementally visits the next levels.

 This procedure assume that the variable ordering in the decomposition is 

static.

 Phases:

 Start at the root node with an empty list of tuples;

 Compute a list of 𝑝∗ tuples that are solver-consistent decomposition by iteratively 

increasing the decomposition depth (depth-bounded depth first search).



Bottom-Up decomposition method

 This procedure bypasses the limitation of the static variable ordering and 

handles any branching strategy.

 Aims at identifying the topmost search frontier with approximately 𝑝∗ open 

nodes by sampling and estimation.

 Phases:

 Build a partial tree by sampling the top of real search tree;

 Estimate the level widths of the real tree;

 Determine the decomposition depth 𝑑∗ with a greedy heuristic.



Bottom-Up decomposition method



My work

 Context:

 Turbo is CP solver using GPU acceleration;

 Currently supporting single-GPU execution.

 My research objective:

 Extend Turbo to support multi-GPU execution by splitting large constraint problems 

into subproblems that can be solved in parallel across multiple GPUs, using MPI for 

communication.



Thank you!


