
Special Meeting 2
Multi-GPU Parallel Constraint

Programming
Hakan Hasan

20 June 2025

Constraint programming

 An efficient technique for solving a variety of combinatorial problems

(typically in the NP-complete and NP-hard classes).

 In CP a problem is defined over variables that take values in domains and

constraints which restricts the allowed combination of values.

Constraint programming

 CP uses for each constraint an algorithm that removes values of variables that

are inconsistent with the constraint. These algorithms are called while a

domain is modified.

 Then, a search algorithm such as a backtracking or branch-and-bound

algorithm is called to find solutions.

The problem

 Current solvers can handle instances with hundreds of thousands variables and

millions of constrains.

 But we want to solve even larger constraint problems!

 The natural next step in the development of ever more powerful constraint

optimization methods is the use of parallelism.

Embarrassingly parallel search

 Method for solving CP problems in parallel based on embarrassingly parallel

computations.

 When having 𝑘 workers EPS proposes to split the problem into a huge number

of sub-problems (e.g., 30𝑘) and give the subproblems successively and

dynamically to the workers.

 EPS expects that for each worker the sum of the resolution time of its

subproblems will be equivalent ⇒ load balancing is automatically obtained in

a statistical sense.

Key concepts

 Massive static decomposition

 Loose communication

 Non-intrusive implementation

Problem decomposition

 The decomposition challenge is to find the depth at which the search frontier

contains approximately 𝑝∗ nodes.

 EPS statically decomposes the initial problem into a huge number of

subproblems that are consistent with propagation.

Top-Down decomposition method

 Starts from the root node and incrementally visits the next levels.

 This procedure assume that the variable ordering in the decomposition is

static.

 Phases:

 Start at the root node with an empty list of tuples;

 Compute a list of 𝑝∗ tuples that are solver-consistent decomposition by iteratively

increasing the decomposition depth (depth-bounded depth first search).

Bottom-Up decomposition method

 This procedure bypasses the limitation of the static variable ordering and

handles any branching strategy.

 Aims at identifying the topmost search frontier with approximately 𝑝∗ open

nodes by sampling and estimation.

 Phases:

 Build a partial tree by sampling the top of real search tree;

 Estimate the level widths of the real tree;

 Determine the decomposition depth 𝑑∗ with a greedy heuristic.

Bottom-Up decomposition method

My work

 Context:

 Turbo is CP solver using GPU acceleration;

 Currently supporting single-GPU execution.

 My research objective:

 Extend Turbo to support multi-GPU execution by splitting large constraint problems

into subproblems that can be solved in parallel across multiple GPUs, using MPI for

communication.

Thank you!

