SIIT

Special Meeting #2

"Research Journey Update"

Hedieh.haddad@uni.lu 20th June 2025

The Challenge

The Tuning Bottleneck

- Constraint Programming (CP) solver performance is highly sensitive to its internal hyperparameters.
- Finding the best configuration manually is difficult, time-consuming, and a major barrier to using solvers effectively.
- A lot of possible parameters, but a set of parameters not always good on each problem.
- It is left to the user to manually pick the best set of parameters to obtain the best efficiency.

Large Parameter Space


Inefficient Methods

Lack of reusable framework

3

Lack of reusable framework

Hyperparameter optimisation (HPO)

- HPO is the process of selecting the optimal values for the algorithm's hyperparameters.
- HPO is very successful in the other fields like ML.
- HPO can improve tremendously the efficiency of the algorithms in ML.

- There are several strategies for hyper-parameter optimisation, including:
 - Grid search
 - Random search
 - Hyper-band optimisation
 - Hamming distance
 - Bayesian optimization

6

Lack of reusable framework

IIII SNT

Probe and solve algorithm

Two-Phase Approach for Optimizing hyper parameters

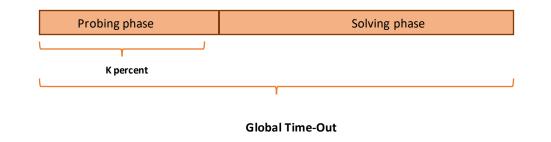
7

Probing Phase

Explores various configurations using HPO methods, ranking them based on performance within a (K percent) limited time.

Solving Phase

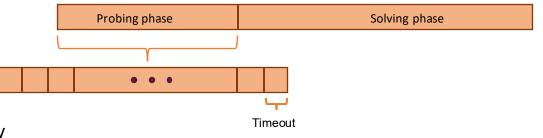
Utilizes the top-ranked configuration from the probing phase to solve the constraint problem.


Flexibility

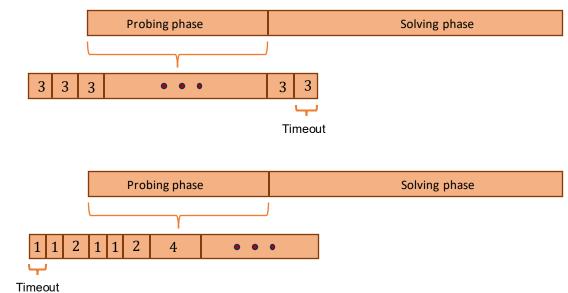
Algorithm adapts dynamically based on problem complexity and solver performance, enhancing efficiency.

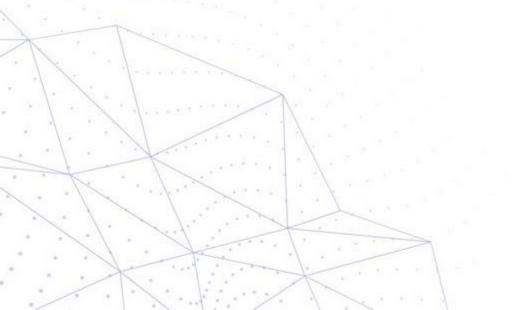
9

- ✓ Probing Timeout Allocation
 - Static Allocation: Reserve fixed % of total timeout (e.g., 20%)
 - Maximum Iterations: Limit rounds so total time isn't exceeded
 - *Dynamic Stopping:* Stop if no improvement after N rounds

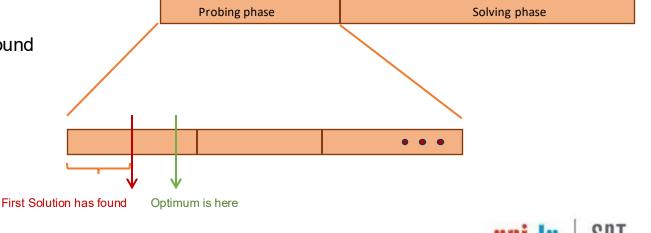


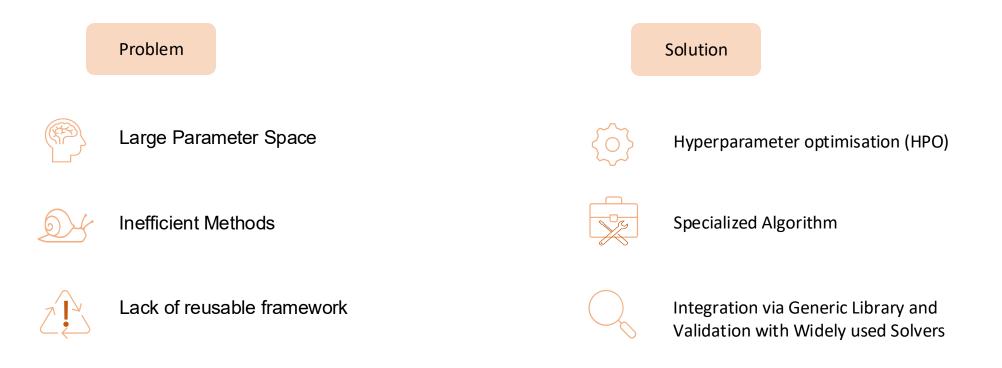
- ✓ Probing Timeout Allocation
 - Static Allocation: Reserve fixed % of total timeout (e.g., 20%)
 - Maximum Iterations: Limit rounds so total time isn't exceeded
 - *Dynamic Stopping:* Stop if no improvement after N rounds


Timeout Initialization Strategies

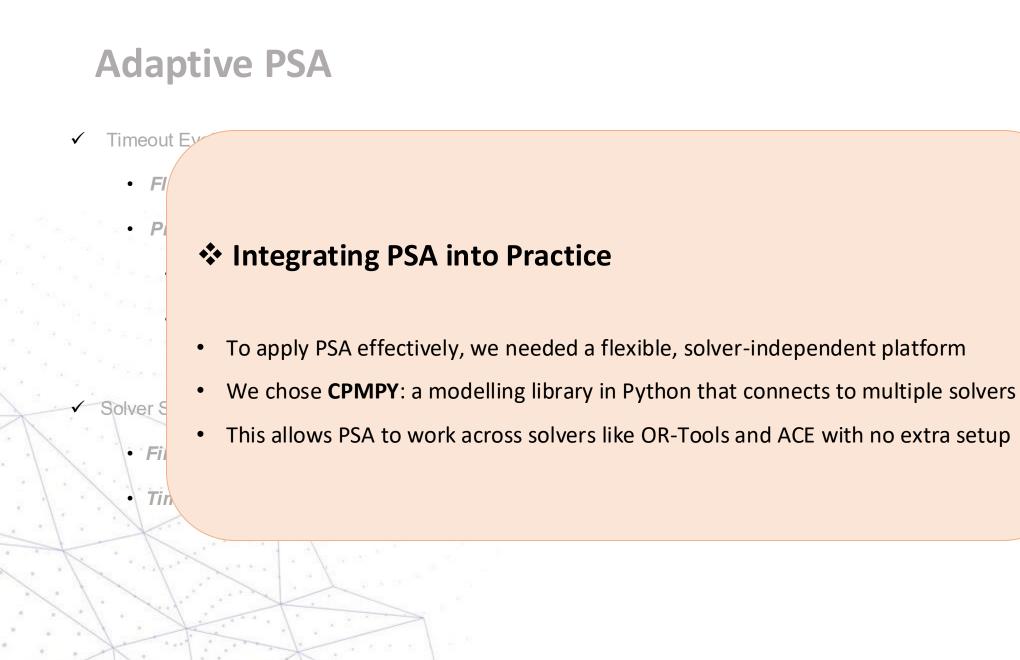

- Fixed-Time Start: Use fixed timeout for every round (e.g., 5s)
- **Baseline-Based Start:** Estimate baseline \rightarrow adjust timeout adaptively
- No Timeout: Run until solution found or stopped manually

- ✓ Timeout Evolution Patterns (Static vs Dynamic Timeout Patterns)
 - *Flat Timeout:* Same timeout for all rounds (3–5s)
 - **Progressive Increase:** Timeout increases after failure
 - *Luby Sequence:* Structured increase (1,1,2,1,1,2,4...)
 - **Geometric Multiplication:** Multiply timeout (e.g., ×1.5 each failure)





- ✓ Timeout Evolution Patterns (Static vs Dynamic Timeout Patterns)
 - *Flat Timeout:* Same timeout for all rounds (3–5s)
 - Progressive Increase: Timeout increases after failure
 - Luby Sequence: Structured increase (1,1,2,1,1,2,4...)
 - *Geometric Multiplication:* Multiply timeout (e.g., ×1.5 each failure)


Solver Stop Conditions

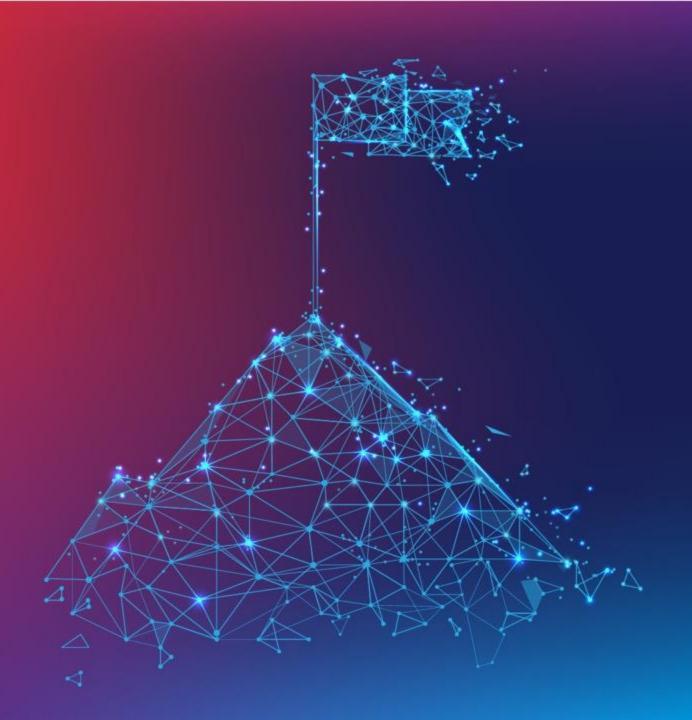
- First Solution Found: Stop as soon as one solution is found
- Timeout Reached: Stop when time limit exceeded

Result

- Approaches Compared:
 - PSA enhanced by Bayesian Optimization (HPO method).
 - PSA enhanced by Hamming Distance (HPO method).
- Implementation Framework:
 - All experiments conducted using CPMPY.
 - Utilized ACE solver .
- **Key Evaluation Metrics:**
 - **Objective Value:** The best objective function value achieved across all compared methods.
 - Time to Best: Time (in seconds) taken by each method to reach the overall best objective value.
 - **Consistency:** Number of problem instances where each specific method successfully found the best objective value.

Result

	Bayesian (PSA)		Hamming (PSA)		Result
	Objective	Runtime (s)	Objective	Runtime (s)	Winner
Instance					
Benzenoide-06	64	1.33	64	1.55	BO (Tiebreak)
Hsp-10405	198	0.63	198	0.89	BO (Tiebreak)
Hsp-aux-10405	198	0.64	198	0.68	BO (Tiebreak)
KidneyExchange-4-041	1	1.07	1	2.15	BO (Tiebreak)
KidneyExchange-4-051	1	1.69	1	2.54	BO (Tiebreak)
KidneyExchange-4-061	11	3.03	11	480.55	BO (Tiebreak)
ProgressiveParty-rally-red12-05	5	0.75	5	1.12	BO (Tiebreak)
ProgressiveParty-rally-red12-07	7	1.10	7	1.23	BO (Tiebreak)
ProgressiveParty-rally-red12-09	9	0.73	9	0.99	BO (Tiebreak)
RIP-25-0-j060-01-01	187	0.97	187	1.98	BO (Tiebreak)
RIP-25-2-j060-20-01	118	0.96	118	480.54	BO (Tiebreak)
SREFLP-CI07	1,590	1.10	1,590	1.65	BO (Tiebreak)
Sonet-s2ring02	14	0.55	14	4.57	BO (Tiebreak)
Sonet-s3ring09	22	480.45	22	480.36	HD+PSA (Tiebreak)
Sonet-s3ring13	21	480.38	21	480.36	HD+PSA (Tiebreak)
Sonet-s3ring14	23	480.39	23	480.35	HD+PSA (Tiebreak)
TSPTW2-n040w020-1	FAIL	480.41	FAIL	480.40	All Failed


Goals for 2025: Research Goals

- Publish 2 papers:
 - 1. Constraints Journal: "Improving Efficiency of Constraint Programming Solver by Focusing on Hyper-parameters"
 - 2. A good Conference: "Integrating Construction Standards into Constraint Programming: A Case Study on Energy Efficiency"
- Managing the 4th CET.
- Synthesize PhD thesis for completion and defense.

Thank you

Hedieh.Haddad@uni.lu

