
Interactive constraints computer-aided composition
ICMC 2017

Pierre Talbot Carlos Agon Philippe Esling
(talbot@ircam.fr)

Institute for Research and Coordination in Acoustics/Music (IRCAM)
Université Pierre et Marie Curie (UPMC)

19th October 2017

Computer-aided composition

Goals
I Delegating tedious computations to the machine.
I Parametrizing the patch with values to quickly try-and-test.
I . . .

How does the composer interact with the machine?
I Mostly visual and dataflow programming languages: OpenMusic,

PureData, Max,. . .
I Functional programming languages for the specifics: Lisp mostly.

2

Dataflow: a patch in OpenMusic

3

Constraints in computer-aided composition

Constraint programming

I Declarative paradigm for solving combinatorial problems.
I We state the problem and let the system solve it for us.
I Example: pitches must form a decreasing sequence (from highest to

lowest).

Some examples of attempts to add constraints into CAC softwares:
I PWConstraints on top of PatchWork: constraints over the pitches,

grouping the pitches together (modelling aspects).
I OMCloud on top of OpenMusic is based on a different constraint

solving paradigm—local search—aiming at the ease of use.

4

Problem

I CAC softwares extended with constraints work in black box: one
solution gets out of the box.

I But constraints are relations, not functions.
I Therefore, a constraint problem can have zero, one or many solutions.

By functionalizing the constraint process, we miss a key point:

Constraints are useful to describe a class of solutions
but how to work with many solutions?

5

Proposal: Interactivity

Experiment with an interactive constraint score editor.

I Bring the composer at the level of the solving process.
I He can consciously choose a solution.
I Development of an interactive search strategy to navigate in the

solution space.

6

Proposal: Spacetime programming

Interactivity and search strategies is a deeper problem: constraint solvers
also work in a “black box” mode.

We propose the process calculi spacetime programming.
SP = constraint programming + synchronous paradigm.

Spacetime programming

I Synchronous programming for interactive computing.
I A search strategy is viewed as a process: abstraction over the

constraint solver.

7

Menu

I Introduction

I Interactivity in solvers

I Interactivity in CAC

I Conclusion

8

All-interval series: a MiniZinc model

int: n = 12;
array[1..n] of var 1..n: pitches ;
array[1..n−1] of var 1..n − 1: intervals;
constraint forall(i in 1..n − 1)

(intervals [i] = abs(pitches [i+1] − pitches[i]));
constraint alldifferent (pitches);
constraint alldifferent (intervals);

solve satisfy;

& 124
& 124 n# n n n# n n n n# n# n# n n♮ ♮

9

All-interval series: a MiniZinc model

int: n = 12;
array[1..n] of var 1..n: pitches ;
array[1..n−1] of var 1..n − 1: intervals;
constraint forall(i in 1..n − 1)

(intervals [i] = abs(pitches [i+1] − pitches[i]));
constraint alldifferent (pitches);
constraint alldifferent (intervals);

solve satisfy;

10

Synchronous paradigm
I Invented in the 80s to deal with reactive system subject to many

(simultaneous) inputs.
I Continuous interaction with the environment.
I Mainly used in embedded systems.

11

Spacetime execution scheme

I The search tree is represented as a queue of nodes.
I We feed the program with one node of the tree per instant.
I The synchronous program fuels the queue with new nodes.

inputs outputs

synchronous program

push 0..Ndequeue

spacetime extension

local

global

queue

12

Spacetime programming
Syntax

〈p, q, . . . 〉 ::= communication fragment
| spacetime Type x = e (variable declaration)
| when cond then p end (ask)
| x <- e (tell)
| x .m(. . .) (method call)
| synchronous fragment
| par p || q end (parallel composition)
| p ; q (sequential composition)
| suspend when cond in p end (suspension)
| loop p end (infinite loop)
| pause (delay)
| search tree fragment
| space p end (branch creation)
| prune (branch pruning)

13

Spacetime attribute

Problem
How to differentiate between variables in internal/global state and those
onto the queue?

We use a spacetime attribute to situate a variable in space and time.
I single_space: variable global to the search tree.
I single_time: variable local to one instant.
I world_line: backtrackable variable in the queue of nodes.

14

Menu

I Introduction

I Interactivity in solvers

I Interactivity in CAC

I Conclusion

15

Score editor: overview

Constraint solving zone for the interactions with the composer.

16

A first interactive strategy
The strategy usually implemented in CAC with constraints: stop at each
solution. In practice: click on “space” to jump to the next solution.

class EachSolution {
world_line VStore domains = bot;
world_line CStore constraints = bot;
proc stop_at_solution =

loop
par
|| when domains |= constraints then stop end
|| pause
end

end
}

& 124
& 124 n# n n n# n n n n# n# n# n n♮ ♮ 17

Interaction with the composer

The composer interacts with the search in-between instants.
The spacetime attributes enable interactions with the search in two main
ways: globally or only for the current search path.

class PSolver {
world_line CStore constraints = bot;
single_space CStore cpersistent = bot;
...

}

& 124 n n# n# n# n

18

Lazily navigating the solution space
The next two scores represent a choice between]D and]G on the sixth
note:

& 124 n n n n# n #n#n n #n #n n n #n

& 124 n n n n# n #n#n #n n #n n #n n

SubSolver<RBinary, Model> left = new SubSolver();
SubSolver<Binary, Model> right = new SubSolver();
single_time L<Boolean> choice = bot;
choice <- top;
par
|| suspend when choice |= true then right . search() end
|| suspend when choice |= false then left . search() end
end

19

Menu

I Introduction

I Interactivity in solvers

I Interactivity in CAC

I Conclusion

20

Constraints in music
From a computer scientist perspective

I Probably not for generating music: machine learning methods do it
better.

I Reasoning on a class of scores satisfying some properties.
Example: we are not forced to write a particular pitch but a class of
pitches satisfying some rules.

I Constraints do not force the composer to make any choice!

21

Conclusion

I Constraints are relational: interactive search helps to use them in this
way.

I To program interactive search strategies, we use spacetime
programming.

Future work
I Current prototype with AIS only; enabling any MiniZinc model.
I This would allow composers to try the system and to develop more

strategies.

Stay tuned! github.com/ptal/bonsai
github.com/ptal/repmus

22

github.com/ptal/bonsai
github.com/ptal/repmus

Thank you for your attention.

Stay tuned! github.com/ptal/bonsai
github.com/ptal/repmus

23

github.com/ptal/bonsai
github.com/ptal/repmus

	Introduction
	Interactivity in solvers
	Interactivity in CAC
	Conclusion

