
Combining Constraint Languages
via Abstract Interpretation

ICTAI 2019

Pierre Talbot, David Cachera, Éric Monfroy, Charlotte Truchet
{pierre.talbot}@univ-nantes.fr

University of Nantes

4th November 2019



Introduction

Context: Project AbSolute (Pelleau and al., 2013)

I Mixed constraint solver on integer and real numbers in OCaml.
I Based on abstract interpretation (especially abstract domains) and

constraint programming (CP).
I Abstract domains = partially ordered sets with operators.

I CP ∪ abstract domains ∪ reduced products.
I Abstract interpretation \ widenings ∪ backtracking.

2



Constraint programming

Constraint satisfaction problem (CSP)
A CSP is a pair 〈d ,C〉, example :

〈{x 7→ {1, 2, 3}, y 7→ {1, 2, 3}}, {x > y , x 6= 2}〉

A solution is {x 7→ 3, y 7→ 1}.

3



Classic solver VS solver by abstract interpretation

A classic solver in CP:

1: solve(〈d ,C〉)
2: 〈d ′,C〉 ← propagate(〈d ,C〉)
3: if d ′ = {a} then
4: return {a}
5: else if d ′ = {} then
6: return {}
7: else
8: 〈d1, . . . , dn〉 ← branch(d ′)
9: return

⋃n
i=0 solve(〈di ,C〉)

10: end if

4



Classic solver VS solver by abstract interpretation

A solver by abstract interpretation, with Abs an abstract domain::

1: solve(a ∈ Abs)
2: a← closure(a)
3: if state(a) = true then
4: return {a}
5: else if state(a) = false then
6: return {}
7: else
8: 〈a1, . . . , an〉 ← split(a)
9: return

⋃n
i=0 solve(ai )

10: end if

Conservative extension: We encapsulate a CSP in an abstract domain.

5



Research question

Global constraints are crucial to efficiently solve CSP but:

I There are a lot (> 400).
I Most of these are very specialized.
I Only a small subset is implemented in mainstream solvers.

We should think about more general methods.
We propose to rely on abstract domains.

6



Global constraints VS abstract domains

I Global constraints: capture a sub-structure + efficient solving
algorithm for this structure.

I Abstract domain for CP:
I Exact representation, or by over-approximation of a constraint language.
I Partially ordered set equipped with several operations (consistency,

entailment, join, . . .).

I Various discrete and continuous abstract domains: interval, octagon,
polyhedra, etc.

I Combination and transformators over these domains: reduced
product, reduced product by reification, partitioning, etc.

7



Contributions

I Adapt integer octagon abstract domain to CP.
I Design of a generic reduced product where domains communicate

through equivalence constraints.
I We are guided by a scheduling application: Resource-constrained

project scheduling problem (RCPSP, RCPSP/max).

Decompose global constraints into abstract domains.

8



Plan

I Introduction

I Scheduling problem RCPSP

I Abstract domains for RCPSP

I Conclusion

9



Scheduling problem RCPSP

NP-complete optimisation problem:

I T is a set of tasks, di ∈ N the duration of task i .
I P are the precedences among tasks: i � j ∈ P if i must terminate

before j starts.
I R is a set of resources where k ∈ R has a capacity ck ∈ N.
I Each task i uses a quantity rk,i of resources k.

Goal: find a (minimal) planning of tasks T that satisfies precedences in P
without exceeding the capacity of available resources.

10



Example with 5 tasks and 2 resources

T1
(2,2)

T2
(0,1)

T3
(3,3)

T4
(2,3)

T5
(1,0)

Time units

Resources consumption

capacity r1

capacity r2

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6

Time units

T1

T2 T4 T3

T5

0 1 2 3 4 5 6 7 8

11



Constraints model

I Variables : si ∈ {0..h − 1} is the starting time of task i .
I Constraints :

∀(i � j) ∈ P, si + di ≤ sj (1)

∀j ∈ [1..n], ∀i ∈ [1..n] \ {j},
bi ,j ⇔ (si ≤ sj ∧ sj < si + di )

(2)

∀j ∈ [1..n], rk,j + (
∑

i∈[1..n]\{j}
rk,i ∗ bi ,j) ≤ ck (3)

1. Temporal constraints (eq. 1)
2. Resources constraints (eq. 2 and 3): tasks decomposition of

cumulative.

12



Three kinds of constraints

I In green: octagonal constraints treated by octagon abstract domain.
I In red: equivalence constraints treated in a specialized reduced product.
I In blue: interval constraints treated by the CSP abstract domain.

∀(i � j) ∈ P, si + di ≤ sj

∀j ∈ [1..n], ∀i ∈ [1..n] \ {j},
bi ,j ⇔ (si ≤ sj ∧ sj < si + di )

∀j ∈ [1..n], rk,j + (
∑

i∈[1..n]\{j}
rk,i ∗ bi ,j) ≤ ck

Equivalence constraints connect the CSP and octagon abstract domains.

13



Plan

I Introduction

I Scheduling problem RCPSP

I Abstract domains for RCPSP

I Conclusion

14



CP Abstract Domain

Lattice 〈Abs,≤〉 representable in a machine where:
I ⊥ is the smallest element.
I t performs the union (join) of two elements.
I J.K : Φ→ Abs is a partial function turning a constraint into an element

of the abstract domain.
I closure : Abs → Abs propagates the constraints in the abstract domain.
I �: Abs × Φ where a � ϕ holds if γ(a) ≤ JϕK\.
I . . .

15



Integer octagon (Miné, 2004)

An integer octagon is defined over a set of variables (x0, . . . , xn−1) and
constraints:

±xi −±xj ≤ d

where d ∈ Z is a constant.

Complexity of the main operations:
I join is O(n2).
I closure: Floyd-Warshall algorithm in O(n3), incremental version in
O(n2) to add a single constraint (Chawdhary and al., 2018). Normal
form equivalent to path consistency (Dechter and al., 1991).

I o � ϕ is in constant time when ϕ is a single octagonal constraint.

16



Example of integer octagon

Take the following constraints:

x0 ≥ 1 ∧ x0 ≤ 3 x1 ≥ 1 ∧ x1 ≤ 4
x0 − x1 ≤ 1 −x0 + x1 ≤ 1

Bound constraints on x0 and x1 are represented by the yellow box, and
octagonal constraints by the green box.

x0

x1

x0,1
0

x0,1
1

x0

x1

17



Direct product: combination of abstract domains

We can define a direct product over CSP × Oct as follows:

(csp, o) t (csp′, o′) = (csp tCSP csp′, o tOct o′)

JcK =


(JcKCSP , JcKOct)

(JcKCSP ,⊥Oct) if JcKOct is not defined
(⊥CSP , JcKOct) if JcKCSP is not defined

closure((csp, o)) = (closure(csp), closure(o))

Issue: domains do not exchange information.

18



Reduced product via equivalence constraints

We consider a reduced product to connect constraints from both domains
via equivalence constraints.
I Let c1 ⇔ c2 be an equivalence constraint where Jc1KCSP and Jc2KOct

are defined, then we have:

prop⇔(csp, o, c1 ⇔ c2) ,

csp �CSP c1 =⇒ (csp, o t Jc2KOct)
csp �CSP ¬c1 =⇒ (csp, o t J¬c2KOct)
o �Oct c2 =⇒ (csp t Jc1KCSP , o)
o �Oct ¬c2 =⇒ (csp t J¬c1KCSP , o)
(csp, o) otherwise

I This propagator is sound: it does not remove solutions.

19



Reduced product via equivalence constraints

We improve the closure operator by propagating the set of equivalence
constraints R.
Closure operator of the reduced product CSP × Oct:

closureR(csp, oct,R) = (
⊔

r∈R prop⇔(csp, oct, r),R)

closure((csp, oct,R)) =
(closureR(closure(csp′), closure(oct ′),R))

Let e be an element of the reduced product, then the closure operator can
be applied to a fixed point closure(e) = e.

Result: A generic reduced product to combine abstract domains with
disjoint set of variables.

20



Plan

I Introduction

I Scheduling problem RCPSP

I Abstract domains for RCPSP

I Conclusion

21



Benchmarks
I In brief: We are bettered by state of the art methods (e.g. Chuffed

with lazy clause).
I In comparison to GeCode/cumulative:

22



Related work

I Satisfiability modulo theories (SMT)
I SMT theories and abstract domains very close but on different

underlying theories (logic VS posets).
I Implementation of Nelson-Oppen usually not formalized and mysterious.

I Abstract Conflict Driven Learning (D’Silva et al., 2013).
I Very nice theoretical framework to integrate solving and abstract

interpretation.
I Still a big gap between theory and practice.

We aim to reduce the gap between practice and theory.

23



Conclusion

1. New structures:
I Investigate integer octagon abstract domains for CP.
I A new combination: reduced product by equivalence constraints.
⇒ It allows us to use reified constraints in abstract domains.

2. A case study: RCPSP.
Bonus: We can handle continuous temporal constraint with
discrete resources.

3. Automated benchmarking framework (including Chuffed, GeCode,
AbSolute).

github.com/ptal/AbSolute/tree/ictai2019

24

github.com/ptal/AbSolute/tree/ictai2019


Thank you!

25


	Introduction
	Scheduling problem RCPSP
	Abstract domains for RCPSP
	Conclusion

