Combining Constraint Languages
via Abstract Interpretation
ICTAI 2019

Pierre Talbot, David Cachera, Eric Monfroy, Charlotte Truchet
{pierre.talbot}@univ-nantes.fr

University of Nantes

4th November 2019

UNIVERSITE DE NANTES

Introduction

Context: Project AbSolute (Pelleau and al., 2013)

Mixed constraint solver on integer and real numbers in OCaml.

Based on abstract interpretation (especially abstract domains) and
constraint programming (CP).

Abstract domains = partially ordered sets with operators.

CP U abstract domains U reduced products.
Abstract interpretation \ widenings U backtracking.

Constraint programming

Constraint satisfaction problem (CSP)
A CSP is a pair (d, C), example :

{x—{1,2,3},y — {1,2,3}}, {x > y,x # 2})

A solution is {x — 3,y +— 1}.

Classic solver VS solver by abstract interpretation

A classic solver in CP:

solve((d, C))
(d’, C) + propagate((d, C))
if d = {a} then
return {a}
else if d' = {} then
return {}
else
(di,...,d,) < branch(d’)
return |Ji_,solve((d;, C))
end if

© NSO R W

._.
e

Classic solver VS solver by abstract interpretation

A solver by abstract interpretation, with Abs an abstract domain::

1. solve(a € Abs)

2: a «+ closure(a)

3: if state(a) = true then

4: return {a}

5: else if state(a) = false then
6: return {}

7: else

8 (a1,...,an) < split(a)

9: return |J_solve(a;)

10: end if

Conservative extension: We encapsulate a CSP in an abstract domain.

5

Research question

Global constraints are crucial to efficiently solve CSP but:

There are a lot (> 400).
Most of these are very specialized.

Only a small subset is implemented in mainstream solvers.

We should think about more general methods.
We propose to rely on abstract domains.

Global constraints VS abstract domains

Global constraints: capture a sub-structure + efficient solving
algorithm for this structure.
Abstract domain for CP:

Exact representation, or by over-approximation of a constraint language.
Partially ordered set equipped with several operations (consistency,
entailment, join, ...).

Various discrete and continuous abstract domains: interval, octagon,
polyhedra, etc.

Combination and transformators over these domains: reduced
product, reduced product by reification, partitioning, etc.

Contributions

Adapt integer octagon abstract domain to CP.

Design of a generic reduced product where domains communicate
through equivalence constraints.

We are guided by a scheduling application: Resource-constrained
project scheduling problem (RCPSP, RCPSP/max).

Decompose global constraints into abstract domains.

Plan

» Scheduling problem RCPSP

Scheduling problem RCPSP

NP-complete optimisation problem:

T is a set of tasks, d; € N the duration of task i.

P are the precedences among tasks: / < j € P if i must terminate
before j starts.
R is a set of resources where k € R has a capacity ¢, € N.

Each task i uses a quantity ry ; of resources k.

Goal: find a (minimal) planning of tasks T that satisfies precedences in P
without exceeding the capacity of available resources.

10

Example with 5 tasks and 2 resources

Resources consumption

6 capadity[r
5
4 capacity|rn
3
2
1
0
1 3 4 6 7 8
Time units
T Ts
T2 N T3
0 1 4 5 6 7 8
Time units

11

Constraints model

Variables : s; € {0..h — 1} is the starting time of task i.
Constraints :

V(ii<j)eP, si+di <s; (1)
bi,j = (S,’ < Sj /\Sj < s+ d,')
Vje[l.n], rej+(Z rii* bij) < ck (3)

i€[1..n\{j}

Temporal constraints (eq. 1)

Resources constraints (eq. 2 and 3): tasks decomposition of
cumulative.

12

Three kinds of constraints

In green: octagonal constraints treated by octagon abstract domain.
In red: equivalence constraints treated in a specialized reduced product.

In blue: interval constraints treated by the CSP abstract domain.
V(i< j)€eP, si+d <s

Vj € [Lon], Vi € [Ln]\ {j},
b;J@(S;SSj/\Sj <S,'-|-d,')

Vje[l.n], rj+(Z i * bij) < ¢
ie[L.n\{j}

Equivalence constraints connect the CSP and octagon abstract domains.

13

Plan

» Abstract domains for RCPSP

14

CP Abstract Domain

Lattice (Abs, <) representable in a machine where:
L is the smallest element.
LI performs the union (join) of two elements.

[.] : ® — Abs is a partial function turning a constraint into an element
of the abstract domain.

closure : Abs — Abs propagates the constraints in the abstract domain.
E: Abs x ® where a F ¢ holds if y(a) < [¢]".

15

Integer octagon (Miné, 2004)

An integer octagon is defined over a set of variables (xo,

...y Xp—1) and
constraints:
:i:X,' — :|:XJ' S d

where d € Z is a constant.

Complexity of the main operations:
join is O(n?).
closure: Floyd-Warshall algorithm in O(n3), incremental version in

O(n?) to add a single constraint (Chawdhary and al., 2018). Normal
form equivalent to path consistency (Dechter and al., 1991).

o F ¢ is in constant time when ¢ is a single octagonal constraint.

16

Example of integer octagon
Take the following constraints:

x> 1Axp <3 x1>1Axg <4
xXo—x1 <1 —x0+x1 <1

Bound constraints on xp and x; are represented by the yellow box, and
octagonal constraints by the green box.

X1
X
0,1 !
X0
0,1
X1
X0

X0

17

Direct product: combination of abstract domains

We can define a direct product over CSP x Oct as follows:

(csp,0) U (csp’,0") = (csp Ucsp csp’, 0 Uoet ©)
([clesp, [cloct)

] = ([elesps Loct) if [c]oet is not defined
(Lesp, [c]loet) if [c]csp is not defined

closure((csp, 0)) = (closure(csp), closure(0))

Issue: domains do not exchange information.

18

Reduced product via equivalence constraints

We consider a reduced product to connect constraints from both domains
via equivalence constraints.

Let 1 < ¢ be an equivalence constraint where [c1]csp and [c2] oct
are defined, then we have:

prop(csp,0,c1 &) =
csp Ecsp a1 = (csp, o [e2] oct)
csp Fesp me1 = (esp, o U [—c2] oct)
o0Foct 2 = (cspU [c]csp,0)
0Foct "2 = (cspU[-ci]csp, 0)
(csp, o) otherwise

This propagator is sound: it does not remove solutions.

19

Reduced product via equivalence constraints

We improve the closure operator by propagating the set of equivalence
constraints R.

Closure operator of the reduced product CSP x Oct:
closurer(csp, oct, R) = (Ll,cr props(csp, oct, r), R)

closure((csp, oct, R)) =
(closureg(closure(csp’), closure(oct’), R))

Let e be an element of the reduced product, then the closure operator can
be applied to a fixed point closure(e) = e.

Result: A generic reduced product to combine abstract domains with
disjoint set of variables.

20

Plan

» Conclusion

21

Benchmarks

> In brief: We are bettered by state of the art methods (e.g. CHUFFED
with lazy clause).
> In comparison to GeCode/cumulative:

Problem : rcpsp-max - Instance set : sm_j20 - Number of instances : 270

I inter W exter M only gecode-6.1.0 with rcpsp-cumulative-min_lb.csv
I only absolute-2d33cd7 with Octagon-Min_max_LB.csv

N

22

Related work

Satisfiability modulo theories (SMT)
SMT theories and abstract domains very close but on different
underlying theories (logic VS posets).
Implementation of Nelson-Oppen usually not formalized and mysterious.
Abstract Conflict Driven Learning (D'Silva et al., 2013).

Very nice theoretical framework to integrate solving and abstract
interpretation.
Still a big gap between theory and practice.

We aim to reduce the gap between practice and theory.

23

Conclusion

New structures:

Investigate integer octagon abstract domains for CP.
A new combination: reduced product by equivalence constraints.
= It allows us to use reified constraints in abstract domains.

A case study: RCPSP.

Bonus: We can handle continuous temporal constraint with
discrete resources.

Automated benchmarking framework (including Chuffed, GeCode,
AbSolute).

) github.com/ptal/AbSolute/tree/ictai2019

24

github.com/ptal/AbSolute/tree/ictai2019

Thank you!

	Introduction
	Scheduling problem RCPSP
	Abstract domains for RCPSP
	Conclusion

