Combining Constraint Languages
via Abstract Interpretation

David Cachera
Univ Rennes, Inria,
CNRS, IRISA
35000, Rennes
david.cachera@irisa.fr

Pierre Talbot
Université de Nantes, LS2N
44000 Nantes, France
pierre.talbot@univ-nantes.fr

Abstract—Constraint programming initially aims to be a
declarative paradigm, but its quest for efficiency is mainly
achieved through the development of ad-hoc algorithms, which
are encapsulated in global constraints. In this paper, we explore
the idea of extending constraint programming with abstract
domains, a structure from program analysis by abstract in-
terpretation. Abstract domains allow us to efficiently process
constraints of the same form, such as linear constraints or differ-
ence constraints. This classification by constraint sub-languages
instead of sub-problems, makes abstract domains more general
and more reusable in many problems. We contribute to the
definition of an abstract domain encapsulating a constraint solver
in a conservative way w.r.t. constraint programming. We also
define a product of abstract domains based on reified constraints
and under-approximations. We study a well-known scheduling
problem to motivate our approach and experiment its feasibility.

Index Terms—constraint programming, abstract interpreta-
tion, cooperation of solvers, mixed domains, reified constraints,
under-approximation

I. INTRODUCTION

Constraint programming is a powerful paradigm to model
problems in terms of constraints over variables. This declar-
ative paradigm solves many practical problems including
scheduling, vehicle routing or biology problems [22], as
well as more unusual problems such as in musical compo-
sition [29].

In order to be efficient, modern constraint solvers heavily
rely on global constraints that are n-ary predicates. They
encapsulate efficient solving algorithms for particular sub-
problems, for example, alldifferent(xq,...,x,) ensures the
variables zi,...,x, to be all different. Constraint program-
ming provides a solving framework where constraints can be
logically composed together, with each one of them effectively
dealing with a part of the problem.

A crucial observation is that we can often design a more
efficient solving algorithm if it is specialized for a particular
problem, and even for a particular class of instances of the
problem. Therefore, we shift from a declarative point of view
to an algorithmic one, which departs from the initial goal of
the constraint paradigm. In particular, this research direction

This work was supported by ANR-15-CE25-0002 Coverif from the French
Agence Nationale de la Recherche. The Centre de calcul intensif des Pays de
la Loire (CCIPL) provided the infrastructure to perform the benchmarks.

Université de Nantes, LS2N
44000 Nantes, France
eric.monfroy @univ-nantes.fr

Charlotte Truchet
Université de Nantes, LS2N
44000 Nantes, France
charlotte.truchet @univ-nantes.fr

Eric Monfroy

is noticeable in the global constraint catalog [4], accounting
for more than 400 global constraints.

Although global constraints are important abstractions, con-
straint solvers usually only implement a dozen of the most
important ones. In addition to studying sub-problems, it is
interesting to focus on more general constraint languages. A
constraint language is a conjunction of constraints that all have
the same form, for instance:

e alldifferent models a language for constraints of

the form = # y with = and y variables.

o Linear programming is a constraint technology for the
language of linear equations of the form a; *xz; + ...+
an, * T, > ¢ where a; and c are constants.

« Difference logic concerns constraints of the form +x +
y<c

The advantage of identifying specific constraint languages is to
use dedicated solving techniques, such as linear programming.

In this article, we target the combination of such dedicated
solvers through abstract interpretation. Abstract interpretation
is a framework to statically analyse programs by approxi-
mating the set of values that can take the variables of a
program [7]. We consider a fragment of this theory called
abstract domain. An abstract domain encapsulates a constraint
language such as bound constraints of the form £x > ¢
(interval domain), linear constraints (polyhedra domain) and
difference logic (octagon domain) [18], to name a few. An ad-
vantage of abstract domains is their unified formal definitions,
as well as products to combine several abstract domains. In
this paper, we advocate that abstract interpretation provides a
formal and compositional framework well suited to combine
constraint languages.

Our first contribution is to define a novel abstract domain
PP which encapsulates constraint solvers relying on propaga-
tor functions—which are the operational form of constraints
(Section III-D). Importantly, it implies that the abstract in-
terpretation framework for constraint solving is conservative
w.r.t. constraint programming, for example global constraints
are still supported. A second contribution is a novel product
of abstract domains, called the reified reduced product, that
allows abstract domains to exchange information by means of
equivalence constraints (Section V). On theoretical grounds,
this reduced product connects reified constraints from con-

mailto:pierre.talbot@univ-nantes.fr
mailto:david.cachera@irisa.fr
mailto:eric.monfroy@univ-nantes.fr
mailto:charlotte.truchet@univ-nantes.fr

straint programming and under-approximations from abstract
interpretation.

We motivate our work with a well-known scheduling prob-
lem (Section II) that can be treated by three abstract domains:
PP (Section III-D), integer octagon (Section IV), and the
reified reduced product (Section V). These abstract domains fit
into the abstract solving framework described in Section III.
We experiment on the scheduling problem in Section VI,
and show that our approach is feasible, although currently
outperformed by modern constraint solvers. We terminate the
paper by discussing more precisely the differences between
global constraints and abstract domains in Section VII, as
well as investigating the connections between our work and
Satisfiability Modulo Theories (SMT) solvers.

II. MOTIVATING PROBLEM: RCPSP

Resource-constrained project scheduling problem (RCPSP)
is a problem where we must find a tasks schedule such that
resources usage do not exceed some capacities. RCPSP is
defined by a tuple (T, P,R) where T is the set of tasks,
P is the set of precedences among tasks, written ¢ < j to
indicate that task ¢ must terminate before j starts, and R is
the set of resources. Each task 7 € T has a duration d; € N
and, for each resource k € R, a resource usage 7,; € N.
Each resource k£ € R has a capacity ¢, € N quantifying how
much of this resource is available in each instant. The goal
is to find a schedule of the tasks 7" meeting the precedences
constraints in P such that, in each instant, the capacities of
the resources available are not exceeded. In general, RCPSP
is an optimization problem where we search for a solution
minimizing the total duration of the schedule.

A constraint model of this problem is to represent each
task ¢ with a starting date s;. All constants and variables are
discrete. We define the temporal constraints as follows:

V(i < j) € P, si+d; <s; (D

Resources constraints are defined as follows:

)

i€ET,s;<t<s;+d;

vte[0.h—1], VK€ R, (Thi) < ek (2)

where h is the horizon of the schedule, which is the latest date
a task can end. A simple way to obtain the horizon is to sum
the duration of the tasks. In each instant ¢ of the schedule,
we constrain the usage of each resource k to not exceed its
capacity. A resource is used in an instant if a task using this
resource is executed during that instant.

Global constraints emerged as efficient algorithms to solve
specialized part of a problem. For instance, resources con-
straints (2) are solved with a dedicated global constraint called

cumulative:
cumulativer([s1,...,sn), [d1,- .. dnl, [Th1y - Thon], Ck)

which ensures that tasks do not exceed the capacity cj of
the resource k. We note that cumulative only processes

one resource k € R at a time. The proposal in this paper
is to use its decomposition into primitive constraints in order
to efficiently process classes of constraints in suited abstract
domains. To achieve that, we rely on the rasks decomposition
of cumulative as given in [25]:

Vj € [Ln], Vi € [Lon] \ {5},
bi,j = (Si < s N85 <8 +dz)

>

ie[l.n\{s}

Part (3) of the decomposition introduces n“ — n Boolean
variables, where a variable b; ; is true iff the tasks 7 and j
overlap. This is realized by reifying the overlap constraint
s; < 55 A sj < s; + d; into the Boolean variable b; ;. For the
constraints in (4), we rely on the observation that a task can
not be preempted, hence the usage of resources only changes
when a task starts. Therefore, for all starting dates s;, the sum
of its consumption of resources 7 ; and the resources of the
tasks ¢ overlapping with j must not exceed the capacity cj.
In the following, we consider the generalized version
RCPSP/max where precedences between two tasks are gen-
eralized. The set P contains temporal constraints of the form:

3)

Vje[l.n], 7+ (Thi*bij) <cp (4)

2

+s;+s;<c)]

where i, j are tasks and ¢ € Z an integer constant. For instance,
the constraint s, — s; < 3 means that task 2 must start at
the latest 3 instants after task 1. Additional constraints such
as “at the latest”, “at the earliest”, “exactly after n instants”,
“before”, “after” are all instances of this temporal constraint.

All in all, the RCPSP problem is defined over three classes

of constraints:

(a) Resources constraints modelled in (4).
(b) Generalized temporal constraints occurring in (3)
and (5).

(c) Equivalence constraints bridging (a) and (b) in (3).
In the following, we introduce three abstract domains for these
classes: an abstract domain for constraint satisfaction problems
(CSP) to treat constraints (a) in Section III, octagon abstract
domain for (b) in Section IV, and the reduced product for
equivalence constraints in Section V.

III. ABSTRACT INTERPRETATION
FOR CONSTRAINT PROGRAMMING

Abstract interpretation is a framework to statically analyse
programs by over-approximating the set of values that can take
the variables of the program [7]. We will focus on a fragment
of this theory which consists in abstract domains.

A. Concrete Domain

A constraint satisfaction problem (CSP) is a tuple (X, D, C)
where X is a set of variables, D; € D the set of values taken
by each variable z; € X, and C a set of relations over vari-
ables, called constraints. A constraint ¢ € C, defined on the
variables x1, ..., x, is satisfied when ¢(v1,...,v,) holds for
all v; € d;. The concrete domain is a lattice D* = (P(D), C)

ordered by inclusion, and each CSP (X, D, C) has an element
in D’ representing its set of solutions:

{D'| D' C D and all ¢ € C satisfied} € D°

We write sol’(c) the set of solutions of a single constraint.
This extensional representation of a CSP is not necessarily
computable (for example on real numbers). We abstract the
concrete domain to an abstract domain which is computable,
but which can over-approximates (contains elements that are
not solutions) or under-approximates (contains only solutions
but not all) the set DP.

B. Abstract Domain

In abstract interpretation, an abstract domain is a partially
ordered set equipped with useful operations for programs
analysis. This notion has been adapted to constraint program-
ming, where some operators are reused (e.g., join and transfer
function) and some are new (e.g., state and split) for its
application to constraint solving [20]. In this paper, “abstract
domain” will refer to this modified notion of abstract domain
for constraint programming that is defined as follows. We use
the set K = {true, false, unknown} to represent elements
of Kleene logic (for instance, false A unknown = false and
true A unknown = unknown).

Definition 1 (Abstract domain). An abstract domain for
constraint programming is a lattice (Abs, <) where Abs is
a set of computer-representable elements equipped with the
following operations:

o L is the smallest element and, if it exists, T the largest.

o U: Abs x Abs — Abs is the join operation between two
elements.

o v : Abs — DP is a monotonic concretization function
mapping an abstract element to its set of solutions.

o state : Abs — K gives the state of an element: true
if the element satisfies all the constraints of the abstract
domain, false if at least one constraint is not satisfied,
and unknown if satisfiability cannot be established yet.

o F: Abs x C' is a deduction relation, called the entailment,
where a F ¢ holds iff we can deduce the constraint c from
a, i.e. if y(a) C sol®(c).

e [[] : C — Abs is a partial function transferring a
logical constraint to an element of the abstract domain.
This function is not necessarily defined for all constraints
since an abstract domain efficiently handles a delimited
constraint language.

e closure : Abs — Abs is an extensive function (Vx,xz <
closure(x)) which eliminates inconsistent values from the
abstract domain. In constraint programming, closure is
known as propagation.

o split : Abs — P(Abs) divides an element of an abstract
domain into a finite set of sub-elements.

We refer to the ordering of the lattice L as <j, and similarly for
any operation defined on L, unless no confusion is possible.
Finally, we note that constraints are encapsulated inside the
abstract domain via the [.] function, thus the closure operator

can be seen as an algorithm propagating the constraints
belonging to this abstract domain. We now illustrate this
definition on the interval abstract domain.

C. Interval Abstract Domain

We denote by A either the set of integers 7Z, rational
numbers Q or floating point numbers F. We add the positive
and negative infinite elements co and —oo into A. We also
define the successor function as
ifaeZ\ {—o00,00}
otherwise

succ(a) =a+1

suce(a) = a
The successor of infinity, rational and floating point numbers
either does not exist or is not computable, in which cases it
is defined by the identity function.

An interval is a pair (I,u) € A? of the lower and upper
bounds, written [l..u], defined as y([l..u]) = {z | | < a < u}
where x € R on rational and floating point numbers, and = €
Z on integers. The lattice of intervals is I = ({[l..u] | VI,u €
A}, <, 1, T, L), ordered by set inclusion < £ C, with bottom
1 £ [~00,00] the set of all elements, top T = {}, and join
L £ N defined by set intersection. An example of this lattice
for the set {0, 1,2} is depicted as:

0

00 11 2.9

01 1.2

0:72]

Let V be a set of variables. The interval abstract domain 7
is the powerset of the indexed set X,Y € P(V x I) s.t.:
o The order is the Smyth order, where an element Y is
greater than X if the interval of all the variables in Y is
included in X:

X<YifV(z,i)e X, 3(y,j)eY, 2=y = i<1j

o L2 {}and y(X) = {(&.7() | (2,0) € X}.
o Let Z = {(z,iUr j)|(x,i) € X, (x,j) € Y} be the
intersection of X and Y, X' the set of the elements with
a variable appearing in X and not in Y, and conversely
for Y. Then XUY £ ZUX' UY".
Then (Z,<,L,l) is a lattice, which is a standard result
(see [11]). We make it into an abstract domain by defining
the corresponding operations:
+ We have

state(X) = {

o Letx € V, b€ A, then [z < b] = {(z,[—00..b])} and
[+ >] = {(, [b-o0])}

e« XEc2 X>|[]

o closure(X) =X

o A possible split is by bissection on the domain of a
variable (z, [l..u]) € X st. I <u. Let m = | (I +u)/2],
then we have:

split(X) = {X U {(z,[l,m))}, X U{(x, [succ(m),u])}}

false

true

if Iz,i)e X, i=T;
otherwise

Notice the use of succ to define split generically over con-
tinuous and discrete domains.

Example 2. We illustrate these operations with three elements
of the interval abstract domain: X = {(x,[0..1]), (y,[0..1])},
Y = {(«,[0..2), (y,[0..2])} and Z = {(x,[3..4]), (y,[3..4]) }.
For instance, we have X UY = X, state(X U Z) = false,
X >Y, and X and Z are not ordered.

Entailment. In contrast to the transfer function, we forbid
the entailment to over-approximate a constraint, thus we
cannot define itas X F ¢ £ X > [c] in the general case. Con-
sider for example {(x, [5.0..6.0])} F = > 5.0 on floating point
intervals, and the over-approximation [> b] = [z > b]]. The
constraint = > 5.0 cannot be represented exactly, and is over-
approximated to x > 5.0. Although the entailment holds on
this over-approximation, it has the solution {(z,[5.0..5.0])}
which is not included in sol’(x > 5.0). However, notice
that it is correct to under-approximate z > 5.0, for example
to x > 5.1, in which case if the entailment holds with the
under-approximation, it also holds with the initial constraint.
These considerations are important in Section V, when we
use the entailment as a guard to add more constraints into the
problem. Similar concerns were tackled for finite domains in
CC(FD) [5].

Of course, this domain alone is not very interesting since it
only takes care of bound constraints. We now equip intervals
with a set of constraint functions in order to abstract a CSP.

D. PP Abstract Domain

We turn a logical constraint ¢ € C into an extensive function
p : I — I, called propagator, over the interval abstract
domain. For example, given d = {(z,[1..2]),(y,[2..3))} € T
and the constraint © > y, a propagator p> associated to
> gives p>(d) = {(z,[2..2]),(y,[2..3])}. We notice that
this propagation step is extensive, e.g., d < p>(d). Beyond
extensiveness, a propagator must also be sound, i.e. it should
not remove solutions of the logical constraint, in order to
guarantee the correctness of the solving algorithm.

We associate to each propagator p a state, function which
is defined similarly to the one of abstract domain. In particular,
an element d is a solution of p if state,(d) = true.

We now define the lattice Pr = (P(Prop), C) where Prop
is the set of all propagators (extensive and sound functions).
The lattice of all propagation problems (PP)—a CSP with
propagators instead of logical constraints—is given by the
Cartesian product PP = Z x Pr. An element (d, P) € PP
is greater than (d’, P') € PP if its variables’ domains are
smaller or it has more propagators. The join is defined as
(d,Pyu{d,P"y={durd,PUP).

We define the necessary operations to turn (d, P) € PP
into an abstract domain. First we have state:

state((d, P)) = state(d) A
true if Vp € P, statey(d) = true
false if 3p € P, statey(d) = false
unknown otherwise

which intuitively means that we reached a solution if d is a
solution for all propagators in P.
The concretization is defined as:

v({(d, P)) = {y(d') | d' > d A state({d’, P)) = true}

The function [c] associates the constraint ¢ to its propagator
p. and state function state.. We note that global constraints
are still supported within this model.

The entailment is then defined as follows:

(d, P) E c if state.(d) = true

If the constraint c is satisfied in d, then we can conclude that
¢ does not remove solutions from (d, P). We note that we do
not need the propagator of the constraint ¢ but just its state
function. This is particularly useful to ask if the negation of a
global constraint is entailed (since propagators of the negation
of global constraints are not usually trivial, see [3]).

Given (d,{pi1,...,pn}) € PP, the propagation step is
realized by computing the fixpoint of p;...p, altogether. We
note closure PP — PP the function computing this
fixpoint. There are many possible implementation of closure
as shown in [1], [23], [28]. We leave this choice to the
implementer of this abstract domain.

The split function can be defined similarly to that of the
abstract domain of intervals.

E. Solving Algorithm
We now present a generic abstract constraint solving algo-
rithm, and some conditions for termination.

1: function solve(a € Abs)
2: a < closure(a)

3: if state(a) = true then return {a}

4: else if state(a) = false then return {}
5: else

6: (a1,...,a,) < split(a)

7:

return | J;_, solve(a;)

8: end if

9: end function
This algorithm follows the usual solving pattern in constraint
programming which is propagate and search. We infer as
much information as possible with closure, and then we divide
the problem into sub-problems with split. We rely on state
for the base cases defined when we reach a solution or an
inconsistent node. Note that the abstract domain a € Abs can
be a composition of several abstract domains through reduced
product (see Section V).

Various termination conditions can be designed for solve.
We present one that is usually fulfilled in constraint solver.

Property 3. Let a € Abs, then solve(a) terminates if, given
a chain a1 < ... < ap < ... with a; € Abs produced by
recursive calls on solve, state(a,) is equal to true or false.

As an example, we give sufficient conditions on the abstract
domain PP to match Property 3:

Zo —Zo x1 —T1
! ! ! /
) T Lo T3
!
o g — l — —
—zy | -

Fig. 1: Correspondence DBM/octagon in dimension 2.

Proposition 4. solve((d, P) € PP) terminates if:
(a) The number of variables does not increase.
(b) Every interval is bounded, i.e., ¥(x,[l.u]) €d, l,u ¢
{—00, 0}
(c) For each propagator p € P, we have state,(d) #
unknown whenever all variables in d are
o assigned to a singleton interval (case Z).
o smaller than a precision T € A (case Q or F).

Proof. Condition (a) is met in the usual case as closure and
split keeps the number of variables unchanged. We can check
that condition (b) is met by verifying that the initial element
(d, P) only contains bounded domains. We note that it depends
on the model of the user. Condition (¢) must be checked
individually for each propagator (see, e.g., [14], [28]).

If split is strictly extensive, then each sequence of recursive
solve calls produces a strictly increasing sequence of elements.
Hence, the algorithm eventually terminates since state is de-
fined on top of state, for each propagator p, which eventually
terminates by condition (c).]

Other termination conditions include bounding the depth, the
number of nodes, solving time, but these do not usually
preserve completeness (notice that completeness may not be
preserved on continuous domains anyway).

The function solve on the PP abstract domain is not dif-
ferent from the usual solving algorithms in constraint solvers.
The advantage is to be totally generic w.r.t. an abstract domain,
which can be defined over continuous or discrete domains,
but also works with other kind of constraint solvers such as
in linear programming (Polyhedra domain) or difference logic
(Octagon domain).

IV. INTEGER OCTAGON
A. Definition

The integer octagon abstract domain is defined on a set
of variables (xg,...,z,—1) and a conjunction of octagonal
constraints of the form:

where d € Z is a constant. By extending the set of vari-
ables to (z(,...,xh,_1), Miné [17] gives a transformation
of these constraints into potential constraints of the form

xi — x’, < d where only positive variables occur. A set of

? J

potential constraints can be solved in cubic time by the shortest
paths Floyd-Warshall algorithm. We represent these constraints
in a difference bounded matrix (DBM) corresponding to the
octagon. A DBM is a matrix m where an element m; ; is the
constant d of the potential constraint (L; — x; < d. We note
that whenever j/2 > i/2 (where / is the integer division), the
element m; ; is redundant with m; ;. In the literature, a matrix
with equal redundant elements is said coherent. This property
is made implicit in the implementations, where the redundant
elements are not represented at all. We however keep the full
matrix in the definitions for sake of clarity.

A geometrical intuition of a m-dimensional octagon is to
understand it as an intersection of n-dimensional boxes. We
give an example in 2 dimensions on Figure 1. The constraints
correspond to each side of the octagon, the non-rotated box
models the bound constraints (z < v A z > v), and the box
rotated at 45° models the potential constraints. The lines and
columns of the matrix are annotated with their corresponding
variables, and we depict each element of the matrix with the
side of the octagon it represents. Given the DBM index (i, j),
a useful operation is to retrieve the index of the opposite side
of the octagon with (7,7) where

|

and similarly for J.
We transform a set of octagonal constraints to a set of
potential constraints with the following rewriting function ~~

(with 7 # j):

i+ 1 if 7 is even
i —1if 7 is odd

! !
x; > d ~ T — Ty < —-2d
z; <d ~ Th; — Ty <2
z;—x; <d s m;i—x;j <d
zi+x; <d ~ x’zifx’QjJrl <d
v =y <d o~ Thiy1 — T, <d

! !
—zita; <d o~ Toipy — Tojpy < d

Example 5. To illustrate the relations between octagonal
constraints, the DBM and its geometric representation, we
consider the following constraints:

To>1ANxg <3
l‘o—xlgl

1> 1Ax2 <4
—xp+x1 <1

Bound constraints on xg and x, are represented by the yellow
box on Figure 2b, and octagonal constraints by the green box
(resp. light and dark gray). The intersection of these two boxes
is depicted on Figure 2c.

The potential constraint associated to —xog + x1 < 1 is
x) —xf <1, and is represented in the DBM entry dbmg 1 = 1
(Figure 2a). Using Figure 1, we can find that the DBM entry
(3,1) represents the upper left side of the octagon.

B. Operations

We rely on the matrix representation of an octagon to define
its operations. Let m and m’ be DBMs of dimension n and N
the set {0,...,2n—1}. A matrix is a set of indexed elements
{d*I]i,j € N}.

T

o @ wy T
zh | 0 -2
9 6 2001
7 0 1
ah | 1 2 0 -2
x| 7 1 8 0
(a) DBM

(b) Octagon as intersection of two boxes

Z1
0,1

T
0 > X

(c) Octagon

Fig. 2: DBM and its representation as the intersection of two boxes.

The closure operator is obtained with the Floyd-Warshall
algorithm. This algorithm is extensively studied in the litera-
ture so we do not recall it here (see [17], [27]). In particular,
we consider the incremental variant [2], [6] that allows us
to update the DBM with an octagonal constraint with a time
complexity of O(n?) instead of O(n?) for the general closure.
Given a DBM m, we write its closed DBM m* = closure(m).

The smallest octagon L is defined by the matrix
{oo™I | i,j € N}.

The concretization of a DBM is the set of points included
in the octagon:

’7<m*> = {(U17"~>Un> € 7" |VZ,] € N7 Vj — Uy S mz,]}

Next, we define the operation LI defined as follows:

mUm = {min(mi7j7m;7j)i’j |i,j € N} (6)

This join operation is the intersection of two octagons ob-
tained by taking the minimal coefficients of these two DBMs.
Intuitively, if a coefficient is smaller, it means that the interval
between two parallel sides of the octagon is narrower. The
order m’ < m is equivalent to m/ Lm = m.

Next, we have the operation state:

state(m) =
false if 33,5 € N, my; +myz7 <0
true if Vi,j € N, myj +mz7 >0 (7
and m is closed
unknown otherwise

The octagon is inconsistent (false) if two sides in parallel
are inverted, which translates in a negative sum of their
coefficients!. It is true if the DBM is closed and it is not
inconsistent. In all other cases, the state of the octagon is
unknown.

The transfer operation in octagon is only defined for oc-
tagonal constraints. Let a,b be the indices of the octagonal
variables and ¢,7 of the potential variables, we have the
following rewriting:

ixaimbgdwx;—wggd’

'In the DBM representation, the sign of the coefficient of a side—
representing a lower bound—must be negated to obtain its Euclidian coordi-
nate.

and the following transfer operation:
[z, +ap <d] = Lu{d"}

We rely on the rewriting from octagonal to potential con-
straints to set the coefficient d’ in the DBM.

The entailment is defined as m F ¢ £ state(m U [c]) =
true since the transfer function does not over-approximate
constraints (it is exact). The entailment is efficiently performed
in constant time because we only have one octagonal constraint
to check. In the continuous case, we might support over-
approximation of constraints of the form +z +y < d, relaxed
to +x £ y < d, which is not correct in the context of
the entailment. The solution is to under-approximate such
constraints with £x+y < d—¢§ where § € A is small enough.

Finally, we define a split operator based on the geometric
intuition of octagon, which consists in dividing into sub-
problems that minimize the distance between two sides of
the octagon. Let a,b the index of the DBM maximizing the
expression |m; j + my ;| for every 4,5 € N, and m; ; > mz ;.
Let mid = (mqp+m; 3)/2, then by bisection on the domain,
we have: '

split(m) = {m U {mid®*},m U {(mid + 1)>*}} (8)

In our case, the entry m,; represents the upper bound of a
side of the octagon and m, j its lower bound.

V. REDUCED PRODUCT WITH REIFIED CONSTRAINTS

We now have two abstract domains useful for the RCPSP
problem: propagation problem PP and octagon Oct. The
remaining step is to connect these two domains so they can
communicate, which is achieved by reified constraints.

A. Reified Constraint

A reified constraint has the form c¢; < c¢o where the
state of ¢y is required to be equivalent to the one of cs.
The main strength of this equivalence is that ¢; and co
are not necessarily represented in the same abstract domain.
Therefore, this mechanism is suited to exchange information
between two abstract domains.

We have reified constraints (in eq. (3) of the RCPSP model)
where Boolean variables can be represented in the PP abstract
domain, and constraints of the form s; < s; As; < s;+d; in
the octagon abstract domain.

Using the entailment operator, we define a generic propaga-
tor for equivalence constraints between two abstract domains.
Without loss of generality, we rely on PP and Oct to illustrate
the definition. Let ¢; < co an equivalence constraint where
[c1] pp and [ea]oct are defined, then we have:

prope (b, 0,c1 < c3) £
bEpp g — (b, ol [[CQ]]OCt)
bEpp n¢1 = (b,oU[—c2]oet)
0Fpet o — (b LJ [[Cl]]pp, O)
0Fpe o — (b L [[—\Clﬂpp, 0)
(b, 0) otherwise

Proposition 6. prope (b,0,c1 < ¢2) is a sound propagator
(it does not remove solutions).

Proof. Tt follows from the fact that F is required to under-
approximate c; and co, therefore if one is entailed, adding it
(or an equivalent constraint) into the abstract domain does not
remove solutions. O]

This propagator can be generalized to any equivalence
constraint of the form ¢; A. . .Ac, < ¢ A...Ac), by extending
the entailment operator on conjunctions.

B. Products of PP and Oct

The direct product is an abstract domain combining two
abstract domains. It is a Cartesian product of two abstract
domains with operators redefined on this product. We can
define it on PP x Oct as follows:

L= (Lpp, Loct)
(b,o) U (V/,0") = (bUpp b/, 0Upet 0)
(b,o)Ec=bEppcorokFpuc

state((b, 0)) = statepp(b) A stateoct(0)

([l pp; [cloct)

[l =9 (Idrp, Loe)
(Lpp,[cJoet)

closure((b,0)) = (closure(b), closure(o))
split((b,0)) = {(t/,0") | b/ € splitpp(b),0 € splitoe(o)}

The problem of the direct product is that abstract domains
do not exchange information, which is especially important in
closure. The reduced product augments direct product with
information exchange. There exists many different reduced
products according to how the information are exchanged. We
refer to [18] for additional explanations on both products.

We introduce a novel reduced product for abstract domains
disjoint on their variable sets and communicating exclusively
via reified constraints. We add to the direct product a set R
of reified constraints, and redefine the closure operator on the
reduced product PP x Oct:

if [c]oet is not defined
if [c] pp is not defined

closuregr(b,0, R) = (| l,cp prop=(b,0,7), R)

closure((b,0, R)) =
(closurer(closure(b), closure(o), R))

solver feas. (%) opt. (%) unsat. (%) ArLp
sm_j10 69.26 69.26 30.74 0.00
AbSolute 69.26 65.93 30.37 0.56
GeCode 69.26 69.26 30.74 0.00
Chuffed 69.26 69.26 30.74 0.00
sm_j20 68.15 68.15 31.85 0.00
AbSolute 68.15 29.63 28.15 5.01
GeCode 68.15 53.33 28.15 1.83
Chuffed 68.15 68.15 31.85 0.00
sm_j30 68.52 68.52 31.48 0.00
AbSolute 66.30 22.96 29.63 5.58
GeCode 67.78 42.96 28.52 2.84
Chuffed 68.52 65.56 3148 0.46
ubo100 86.67 86.67 13.33 0.00
AbSolute 58.89 15.56 11.11 6.96
GeCode 66.67 22.22 12.22 6.78
Chuffed 86.67 68.89 10.00 0.31
ub0200 88.89 88.89 11.11 0.00
AbSolute 52.22 8.89 8.89 6.58
GeCode 54.44 28.89 8.89 9.37
Chuffed 80.00 62.22 4.44 7.17

TABLE I: Experiments on 5 sets of instances.

Let e be an element of the reduced product, the closure opera-
tor can be applied until we reach the fixpoint closure(e) = e.
The function closurer performs the exchange of information
by applying the propagators prop.. on both abstract domains.

VI. IMPLEMENTATION AND EXPERIMENTS

We have implemented the three abstract domains de-
scribed in this paper in the OCaml -constraint solver
AbSolute. Our code and benchmarks are available
on github.com/ptal/AbSolute/tree/ictai2019.
This solver is a prototype that does not aim to compete with
existing solvers, but to test new ideas borrowed from abstract
interpretation. In this section, we evaluate our approach on a
set of classical RCPSP/max benchmarks.

We consider 5 sets of instances from the PSPLIB library, a
suite of benchmarks for RCPSP and RCPSP/max [16]:

e sm_j10, sm_j20 and sm_7j30 contain each 270 in-
stances, and respectively 10, 20 and 30 activities and 5
resources [15].

e ub0100 and ubo200 contain each 90 instances of 100
and 200 activities with 5 resources [13].

We fix the maximal solving time to 10 minutes for all
instances. The experiments are performed on an Intel(R)
Xeon(TM) ES5-2630 V4 running at 2.20GHz on GNU
Linux. The solver AbSolute is compiled with the version
4.07.1+flambda of the OCaml compiler.

We compare AbSolute to GeCode [24], a state of the art
constraint solver, and Chuffed [19] the state of the art con-
straint solver for scheduling problems including RCPSP/max.
For all three solvers, we use a classical branch and bound
algorithm without restarts. The search strategy is based on
the starting dates of the tasks: we select the variable with the
smallest lower bound, and assign this variable to this bound.
The specificities of each solver are as follows:

e AbSolute relies on the reduced product defined in V.

https://github.com/ptal/AbSolute/tree/ictai2019

| Global constraints

Abstract domains

Constraint language
Interactivity
Composition of constraints

Entailment

Heterogeneous
Static
In a logical formula

Usually not supported

Homogeneous
Dynamic
By join LI if homogeneous,
by reduced product otherwise
Operator =

TABLE II: Comparison between global constraints and abstract domains.

e GeCode 6.0.1 treats the resource constraints with
the global constraint cumulative implemented with a
timetabling algorithm [30].

e chuffed 0.10.0 is run on the same model than
AbSolute. This solver implements a hybrid solving
technique between SAT solver and constraint solver,
which is very successful on scheduling problems.

We give preliminary results on Table I where the columns
feas. is the percentage of feasible instances (at least one
solution is found), opt. the proven optimal instances and unsat.
the proven unsatisfiable instances. For feasible instances, the
column Ay g gives the difference between the solutions found
and the best known lower bounds. The first line of each
set of instances (starting with sm_j and ubo) contains the
proportion of feasible, optimal and unsatisfiable instances.

AbSolute and GeCode are largely outperformed by
Chuffed which relies on the successful conflicts analysis
from SAT solving. Nevertheless, we notice that AbSolute is
efficient to prove unsatisfiability; it is better than GeCode on
sm_3j30 and than Chuffed on ubol00 and ubo200. The
reason is that temporal reasoning with octagon implements
path consistency which efficiently detects early inconsistency.
Overall, AbSolute is almost as good as GeCode at find-
ing feasible solutions, but stays behind to prove optimality.
One reason is the number of nodes processed by second in
AbSolute which is about 10 times slower than GeCode,
thus exploring a much smaller portion of the search tree. In
this respect, many optimisations remain to be done in the
implementation of AbSolute.

VII. RELATED WORK

Solving algorithms for difference constraints are not new,
they appear in various works such as temporal constraint
networks [9], octagon in abstract interpretation [17], and
difference logic in Satisfiability Modulo Theories (SMT)
solvers [21].

Feydy et al. [12] encapsulate difference constraints and
reified constraints into a global constraint. Their approach
relies on the Bellman-Ford algorithm for satisfiability, which
has a complexity of O(nlogn 4+ m) where n is the number
of variables and m the number of difference constraints. For
sparse graphs, it allows them to add a single constraint in
O(nlogn) instead of O(n?) for octagons. However, checking
the entailment of p constraints has a cost of O(n log n+m+p),
in comparison to O(p) with octagons. Moreover, the split
strategy (eq. 8) cannot be efficiently implemented since it
relies on computing over all shortest paths. Besides these
complexity results, reified constraints are encapsulated inside
the global constraint whereas it is an orthogonal concern in

abstract domains, treated with another construct (the reified
reduced product). We also note that such encapsulation of rei-
fied constraints inside global constraints is not usually defined.
It is also limited by the static framework of global constraints,
where one must know in advance which constraints might be
added during solving; this is another issue for programming
the split and more interactive applications. We summarize
these differences on Table II. Note that the abstract domain
PP supports heterogeneous constraints, but this is not usually
the case in abstract interpretation.

SMT is a research field with extensive literature on combin-
ing logical theories (see e.g. [26]). A central concern in SMT is
the study of properties of theories (such as stable-infiniteness
and convexity) and what are the properties conserved when
combining two theories. In practice, the combination of theo-
ries in solvers is often ad-hoc and exchange of information is
complex in order to achieve high efficiency. In our framework,
the implementation is almost direct from the definition of
abstract domains and reduced product, although currently more
specialized (disjoint set of variables) and less efficient than
SMT solvers. Several recent works [8], [10] attempt to relate
abstract interpretation and SMT solvers, in particular [8] which
views Nelson-Oppen theory combination procedure in terms
of a specific reduced product. More work is needed in order
to draw clear links between SMT, abstract interpretation and
constraint programming—this paper focusing on the last two
frameworks. In particular, we observe that the reified reduced
product can be understood as SAT (PP x Oct) with x the
direct product and SAT a domain transformer augmenting an
abstract domain with logical connectors. This abstract domain
would resemble the DPLL(T) algorithm of SMT solvers.

VIII. CONCLUSION

We believe that abstract domains are largely orthogonal to
existing approaches. By encapsulating a constraint solver into
the abstract domain PP, we can reuse it in a larger framework,
and make it cooperate with other solvers, in our case octagon
from abstract interpretation. In addition, we integrated reified
constraints into our abstract solving framework by formalizing
deduced constraints as under-approximations. This allows us
to preserve correctness of the solving algorithm (we do not
lose solutions). We have illustrated our approach on the
RCPSP problem, but we should stress that our approach is
generalist since PP can treat any constraint problem. Although
our solver is only a prototype, the experiments show that our
approach is efficient, especially to prove unsatisfiability. The
next step is to formalize conflicts resolution (such as in SAT
and SMT solvers) and to integrate it in the abstract solving
framework.

[1]

[2]

[3]

[4]

[6]
[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

Krzysztof R. Apt. The essence of constraint propagation. Theoretical
computer science, 221(1-2):179-210, 1999.

Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. —Weakly-
relational shapes for numeric abstractions: Improved algorithms and
proofs of correctness. Formal Methods in System Design, 35(3):279—
323, 20009.

Nicolas Beldiceanu, Mats Carlsson, Pierre Flener, and Justin Pearson.
On the reification of global constraints. Constraints, 18(1):1-6, January
2013.

Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon. Global
Constraint Catalog, 2nd Edition (revision a), February 2011. SICS
research report T2012-03, http://soda.swedish-ict.se/5195/.

Bjorn Carlson, Mats Carlsson, and Daniel Diaz. Entailment of finite
domain constraints. ICLP’94, International Conference on Logic Pro-
gramming, 1994.

Aziem Chawdhary, Ed Robbins, and Andy King. Incrementally closing
octagons. Formal Methods in System Design, January 2018.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approxi-
mation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 238-252.
ACM, 1977.

Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. Theories,
solvers and static analysis by abstract interpretation. Journal of the
ACM (JACM), 59(6):31, 2012.

Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks.
Artificial intelligence, 49(1-3):61-95, 1991.

Vijay D’Silva and Caterina Urban. Abstract interpretation as automated
deduction. Journal of automated reasoning, 58(3):363-390, 2017.
Antonio J. Fernandez and Patricia M. Hill. An interval constraint system
for lattice domains. ACM Transactions on Programming Languages and
Systems, 26(1):1-46, January 2004.

Thibaut Feydy, Andreas Schutt, and Peter J. Stuckey. Global difference
constraint propagation for finite domain solvers. In Proceedings of the
10th international ACM SIGPLAN conference on Principles and practice
of declarative programming, pages 226-235. ACM, 2008.

Birger Franck, Klaus Neumann, and Christoph Schwindt. Truncated
branch-and-bound, schedule-construction, and schedule-improvement
procedures for resource-constrained project scheduling. OR-Spektrum,
23(3):297-324, 2001.

S. Ilog. Revising hull and box consistency. In Logic Programming: Pro-
ceedings of the 1999 International Conference on Logic Programming,
page 230. MIT press, 1999.

Rainer Kolisch, Christoph Schwindt, and Arno Sprecher. Benchmark
instances for project scheduling problems. In Project scheduling, pages
197-212. Springer, 1999.

Rainer Kolisch and Arno Sprecher. PSPLIB-a project scheduling
problem library. European journal of operational research, 96(1):205—
216, 1997.

A. Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation (HOSC), 19(1):31-100, 2006.

A. Miné. Tutorial on static inference of numeric invariants by abstract
interpretation. Foundations and Trends in Programming Languages
(FnTPL), 4(3—4):120-372, 2017.

Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via
lazy clause generation. Constraints, 14(3):357-391, September 2009.
Marie Pelleau, Antoine Miné, Charlotte Truchet, and Frédéric Ben-
hamou. A constraint solver based on abstract domains. In Verification,
Model Checking, and Abstract Interpretation, pages 434-454. Springer,
2013.

Vaughan Pratt. Two easy theories whose combination is hard. Technical
report, Technical report, Massachusetts Institute of Technology, 1977.
Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Con-
straint Programming (Foundations of Artificial Intelligence). Elsevier
Science Inc., 2006.

Christian Schulte and Peter J. Stuckey. Efficient Constraint Propagation
Engines. ACM Trans. Program. Lang. Syst., 31(1):2:1-2:43, December
2008.

Christian Schulte, Guido Tack, and Mikael Lagerkvist. Modeling and
Programming with Gecode, 2014.

[25]

[26]
[27]
(28]
[29]

[30]

Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wal-
lace. Why cumulative decomposition is not as bad as it sounds.
In International Conference on Principles and Practice of Constraint
Programming, pages 746-761. Springer, 2009.

Roberto Sebastiani. Lazy satisfiability modulo theories. Journal on
Satisfiability, Boolean Modeling and Computation, 3:141-224, 2007.
Gagandeep Singh, Markus Piischel, and Martin Vechev. Making numer-
ical program analysis fast. pages 303-313. ACM Press, 2015.

Guido Tack. Constraint Propagation — Models, Techniques, Implemen-
tation. PhD thesis, Saarland University, 2009.

Charlotte Truchet and Gérard Assayag. Constraint Programming in
Music. Wiley, 2011.

Petr Vilim. Global constraints in scheduling. PhD thesis, Charles
University in Prague, 2007.

	Introduction
	Motivating problem: RCPSP
	Abstract interpretation for constraint programming
	Concrete Domain
	Abstract Domain
	Interval Abstract Domain
	PP Abstract Domain
	Solving Algorithm

	Integer Octagon
	Definition
	Operations

	Reduced product with reified constraints
	Reified Constraint
	Products of PP and Oct

	Implementation and experiments
	Related work
	Conclusion
	References

