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• Constraint programming (CP) is a paradigm for solving combinatorial problems 

that can be applied to a wide range of problem domains.

• In CP, users declaratively state the constraints on a set of decision variables to 

find a feasible solution.

• CP solvers use a search strategy to explore the space of possible solutions.

Background: Constraint Programming
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• Constraint programming solvers are black-box functions with many parameters.

• Efficiency of constraint programming solvers depends heavily on their parameters. 

• A lot of possible parameters, but a set of parameters not always good on each problem (no-

free-lunch theorem).

• It is left to the user to manually pick the best set of parameters to obtain the best efficiency.

• significant impact on the efficiency of the solver

A Challenge in CP
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• HPO is the process of selecting the optimal values for an algorithm’s hyperparameters. 

• HPO is very successful in other fields like ML.

• HPO can improve tremendously the efficiency of the algorithm in ML.

Can hyperparameter optimisation improve the efficiency of constraint programming solvers?

Hyperparameter Optimisation (HPO)
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• Problem:

• The numerous hyperparameters in CP solvers hinder the efficiency of HPO due 

to the large state-space.

• Solution:

• Focus on particular and impactful subset of hyperparameters: search strategy.

• We propose to encode the search strategy as a set of hyperparameters 

optimised using a HPO algorithms.

HPO for CP
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Why Search Strategies Matter?

The Role in Constraint Programming

Core of Solver Efficiency 

Search strategies determine how a 
solver navigates the solution 

space, directly impacting 
performance.

No Universal Strategy 

No single strategy works best for 
all problems.

Need for Optimization

Optimizing search strategies per 
problem is essential for maximizing 
solver efficiency and effectiveness.

“Guiding Backtrack Search by Tracking Variables During Constraint Propagation.”
G. Audemard, C. Lecoutre, and C. Prud’homme
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There are several algorithms for hyperparameter optimisation, including:

• Grid search

• Random search

• Hyper-band optimisation

• Bayesian optimisation

• …

Hyperparameter Optimisation (HPO)

1. H. Haddad, P. Talbot, and P. Bouvry, “Comparison of Hyperparameter Optimization Methods for Selecting Search Strategy of Constraint 

Programming Solvers,” 7th Workshop on Progress Towards the Holy Grail (PTHG-24), A CP 2024 Workshop, September 2024.

Bayesian Optimisation is approved as the most effective HPO 

methods between the specified HPO methods that we have 

tried during the benchmarking. 1
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Probe and Solve Algorithm

Two-Phase Approach for Optimizing Search Strategies

Probing Phase 

Explores various search strategies 

using HPO methods, ranking them 

based on performance within a limited 

time frame, defined as K percent of the 

total available time.

Solving Phase 

Utilizes the top-ranked strategy 

from the probing phase to solve 

the constraint problem.

Dynamic Timeout Adjustment

Algorithm adapts dynamically 

based on problem complexity and 

solver performance, enhancing 

efficiency.

Probing phase Solving phase

Global Timeout (GT)

K% of GT
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Probe and Solve Algorithm

Two-phase algorithm:

1.Probing phase

✓Constant K percent of global time

✓Using the HPO methods to rank the search strategies

2. Solving phase

✓Solving the problem with the best configuration

Probing phase Solving phase

Global Timeout (GT)

❖ General algorithm - can be used with any constraint solvers

❖ Completely implemented in Python

❖ Compatible with 2 popular frameworks (Minizinc/XCSP3)

K% of GT
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➢ Pseudo-Code :

Probe and Solve Algorithm

COP
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Validating the Robustness with Shorter Timeouts

To determine if shorter timeouts can achieve promising results comparable to longer timeouts by 

examining the correlation of search strategy rankings at both shorter probing timeout and global timeouts:

• 2 statistical methods Used: Spearman’s Rank Correlation, Kendall’s Tau Correlation

• 4 randomly chosen problems 

• 4 different timeouts: 5% , 10%, 20%, 50%

Instance

5 10 20 50

Spearman Kendall Tau Spearman Kendall Tau Spearman Kendall Tau Spearman Kendall Tau

CarpetCutting-test05 0.94 0.83 0.96 0.92 0.91 0,84 0,89 0.81

GeneralizedMKP-OR05x100-75-1 0.99 0.99 0.99 0.99 0.92 0.84 0.91 0.80

RIP-25-0-j120-01-01 -0.33 -0.33 0.88 0.79 0.92 0.82 0.97 0.89

KidneyExchange-4-081 0.83 0.83 0.87 0.84 0.90 0.82 0.93 0.82

* High correlation suggests that rankings from shorter timeouts are like those from longer timeouts.
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An Extended Study

Study other questions using PSA 

➢ PSA can be used to analyse the efficiency of various subset of search strategies 

which are frequently studied within constraint programming:

• Do dynamic search strategies outperform static ones?

• Does assigning different strategies to different subsets of the problem with 

different objectives, lead to better results?

• Can tuning more solver parameters, improve performance?
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Experiment Results (XCSP3 Benchmark with ACE Solver)

ALL available search strategies provided by the solver:

• Explore all search strategies offered by the ACE solver.

• Compared to the default and three well-known universal 

search strategies (CACD, FRBA, PICK3).

• Aim to do a bit better than all individual search strategies, as 

finding a good universal search strategy is very hard due to 

the variability in problem instances.

• PSA could outperform the baselines, around 28%-30% of 

the cases.
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Experiment Results (XCSP3 Benchmark with ACE Solver)

STATIC search strategies provided by the solver:

• Search strategies that are simpler to implement and do not 

require collecting statistics of propagators.

• In order to avoid calculation and update weights during the 

solving process.

• The baselines (CACD, FRBA, PICK3) are dynamic variable 

selection strategies.

• The baseline methods demonstrate superior performance 

around 50% of the cases.
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Experiment Results (XCSP3 Benchmark with ACE Solver)

3 DYNAMIC variable selection strategy:

• Showing the effectiveness of the three well-known universal 

search strategies: PICK3, CACD, and FRBA

• PSA outperforms the baselines search strategy, around 

30% of the cases
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Experiment Results (Minizinc Benchmark with Choco Solver)

ALL available search strategies provided by the solver:

• Explore all search strategies offered by the Choco solver.

• Compare to the default search strategy provided by the solver 

which is the combination of (DomWDeg, Indomain_Min)

• With the ratio of 0.5, PSA outperforms the default search 

strategy in 28.42% of the instances.
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Experiment Results (Minizinc Benchmark with Choco Solver)

ALL available search strategies provided by the solver:

• Explore all search strategies offered by the Choco solver.

• Compare to the default search strategy provided by the solver 

which is the combination of (DomWDeg, Indomain_Min)

• With the ratio of 0.5, PSA outperforms the default search 

strategy in 28.42% of the instances.

Observation:

• Results indicate the importance of the probing phase.

• Spending a portion of time (e.g., 50%) on probing is beneficial.

• Demonstrates the advantages of investing time in the probing phase.



18

Conclusion

PSA validation

➢ We designed a new algorithm that applies HPO methods to CP solvers called PSA.

➢ We focused on the most important hyperparameters of a constraint solvers named 

search strategies.

➢ PSA outperformed baselines using Bayesian optimization around 30% of the cases.

➢ PSA is a generic and parameter-less approach that can be used on top of any 

MiniZinc-compatible or XCSP3-compatible solvers, without modifying those.
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Thank you

hedieh.haddad@uni.lu
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