
Réseau de Contrainte Ternaire pour une Propagation

Efficace de Bornes sur GPU

Journées Francophones de Programmation par Contraintes

(JFPC 2025)

Pierre Talbot

pierre.talbot@uni.lu

https://ptal.github.io

2nd July 2025

University of Luxembourg

Motivation

• Machine learning (deep learning, reinforcement learning, . . .) has seen tremendous

speed-ups (e.g. 100x, 1000x) by using GPU.

• Some (sequential) optimizations on CPU are made irrelevant if we can explore huge state

space faster.

Can we replicate the success of GPU on machine learning

applications to combinatorial optimization?

1

State of the Art: Combinatorial Optimization on GPU

Very scarce literature, usually:

• Heuristics: often population-based algorithms1.

• Limited set of problems2

• Limited GPU parallelization: offloading to GPU specialized filtering procedures3,4.

• cuOpt: new MILP solver—relaxation on GPU, search on CPU5.

No general-purpose constraint solver on GPU.
1A. Arbelaez and P. Codognet, A GPU Implementation of Parallel Constraint-Based Local Search, PDP, 2014.
2Jan Gmys. Exactly Solving Hard Permutation Flowshop Scheduling Problems on Peta-Scale GPU-Accelerated

Supercomputers. INFORMS Journal on Computing, 2022.
3F. Campeotto et al., Exploring the use of GPUs in constraint solving, PADL, 2014
4F. Tardivo et al., Constraint propagation on GPU: A case study for the AllDifferent constraint, Journal of

Logic and Computation, 2023.
5Using primal-dual linear programming (PDLP).

2

Our Contributions

• First general constraint solver fully executing on GPU (propagation + search).

⇒ General: Support MiniZinc and XCSP3 constraint models.

⇒ Simple: interval-based constraint solving + backtracking search (no global constraints,

learning, restart, event-based propagation, ...).

⇒ Efficient?: Almost on-par with Choco (21% better, 30% worst, 49% equal).

⇒ Open-source: Publicly available on https://github.com/ptal/turbo.

• Ternary constraint network: representation of constraints suited for GPU architectures.

3

https://github.com/ptal/turbo

Overview

3

(Simplified) Architecture of the GPU Nvidia H100

...

Global memory (96 GB)

L2 Cache (50MB)

SM 1 (256 KB L1 Cache)

64 cores

SM 132 (256 KB L1 Cache)

64 cores

8448 cores grouped in 132 streaming multiprocessors (SM) of 64 cores each.

⇒ Oversubscribe (to hide memory latency): 1024 threads per SM

135168 threads running in parallel!

4

(Simplified) Architecture of the GPU Nvidia H100

...

Global memory (96 GB)

L2 Cache (50MB)

SM 1 (256 KB L1 Cache)

64 cores

SM 132 (256 KB L1 Cache)

64 cores

8448 cores grouped in 132 streaming multiprocessors (SM) of 64 cores each.

⇒ Oversubscribe (to hide memory latency): 1024 threads per SM

135168 threads running in parallel!
4

On CPU: Embarrasingly Parallel Search (EPS)6

Divide the problem into many subproblems beforehand (e.g. N × 30 with N the number of threads).

Subproblems

Threads pool

...

T1 T2 T3 T2 T1 T1 T3 T2 T2 T1

⇒ Other approach: portfolio approach (e.g., different search strategy on the same problem) as seen

in Choco and OR-Tools.

Each thread works on its own copy of the problem.

6A. Malapert et al., ‘Embarrassingly Parallel Search in Constraint Programming’, JAIR, 2016

5

Programming Challenges on GPU

One subproblem per thread is inefficient because:

• Memory: suppose each thread needs 1MB (small CSP), then 1GB per SM is constantly

moving from global memory to registers.

⇒ Threads competing for cache, slow access to global memory.

• Single instruction, multiple threads (SIMT): each consecutive 32 threads should

execute the same instructions to avoid thread divergence.

• Memory coalescence: the way to access the data is important (factor 10).

6

Programming Challenges on GPU

One subproblem per thread is inefficient because:

• Memory: suppose each thread needs 1MB (small CSP), then 1GB per SM is constantly

moving from global memory to registers.

⇒ Threads competing for cache, slow access to global memory.

• Single instruction, multiple threads (SIMT): each consecutive 32 threads should

execute the same instructions to avoid thread divergence.

• Memory coalescence: the way to access the data is important (factor 10).

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

Thread 0 Thread 1 Thread 2 Thread 3

6

Programming Challenges on GPU

One subproblem per thread is inefficient because:

• Memory: suppose each thread needs 1MB (small CSP), then 1GB per SM is constantly

moving from global memory to registers.

⇒ Threads competing for cache, slow access to global memory.

• Single instruction, multiple threads (SIMT): each consecutive 32 threads should

execute the same instructions to avoid thread divergence.

• Memory coalescence: the way to access the data is important (factor 10).

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2

6

Programming Challenges on GPU

One subproblem per thread is inefficient because:

• Memory: suppose each thread needs 1MB (small CSP), then 1GB per SM is constantly

moving from global memory to registers.

⇒ Threads competing for cache, slow access to global memory.

• Single instruction, multiple threads (SIMT): each consecutive 32 threads should

execute the same instructions to avoid thread divergence.

• Memory coalescence: the way to access the data is important (factor 10).

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2

6

One subproblem per SM7 with EPS.

Less memory transfer, L1 cache per subproblem.

7More precisely, one subproblem per block, a block is running on a single SM. Several blocks can be scheduled

on the same SM.

7

Parallel Propagation

We proposed a correct model of lock-free parallel propagation, but lacked

efficiency8.

8P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.

8

Ternary Constraint Network

8

Representation of Propagators

• Represented using shared_ptr and variant data

structures.

⇒ Uncoalesced memory accesses.

• Code similar to an interpreter:

switch(term.index()) {

case IVar:

case INeg:

case IAdd:

case IMul:

// ...

⇒ Thread divergence.

9

Ternary Constraint Network

CSP ⟨X ,D, {c1, . . . , cn}⟩ where each ci is of the form x = y <op> z with:

• x , y , z ∈ X (no constant),

• op ∈ {+, /, ∗,mod ,min,max ,≤,=}.

Expressive enough to support all problems of MiniZinc competitions 2022–2024.

Example

The constraint x − y ̸= 2 is represented by:

x = t1 + y equivalent to t1 = x − y

ZERO = (t1 = TWO) equivalent to false ⇔ (t1 = 2)

where ZERO and TWO are two variables with constant values.

10

Ternary Constraint Network

CSP ⟨X ,D, {c1, . . . , cn}⟩ where each ci is of the form x = y <op> z with:

• x , y , z ∈ X (no constant),

• op ∈ {+, /, ∗,mod ,min,max ,≤,=}.

Expressive enough to support all problems of MiniZinc competitions 2022–2024.

Example

The constraint x − y ̸= 2 is represented by:

x = t1 + y equivalent to t1 = x − y

ZERO = (t1 = TWO) equivalent to false ⇔ (t1 = 2)

where ZERO and TWO are two variables with constant values.

10

Bytecode Representation

The ternary form of a propagator holds on 16 bytes:

struct bytecode_type {

int op;

int x;

int y;

int z;

};

• Uniform representation of propagators in memory ⇒ coalesced memory accesses.

• Limited number of operators + sorting ⇒ reduced thread divergence.

11

Drawback of TCN: increase in number of propagators and variables.

Benchmark on the MiniZinc Challenge 2024 (95 instances)

The median increase of variables is 4.46x and propagators is 4.85x.

The maximum increase of variables is 258x and propagators is 607x.
12

Benchmarking

12

Experimental Evaluation

On 95 instances of the MiniZinc 2024 competition.

5 instances discarded (yumi-static) due to out of memory error with TCN.

Timeout 20 minutes, CPU 64 cores, GPU H100.

solver MiniZinc score #Optimal

Or-Tools 9.9 (64 threads) 312.9 80

Choco 4.10.18 (64 threads) 233.0 43

Choco 4.10.18 (free search) 159.5 32

Or-Tools 9.9 (fixed search) 130.2 36

Choco 4.10.18 (fixed search) 56.6 25

Turbo 1.2.8 (fixed search) 52.3 20

13

1-to-1 Comparison

Comparison of the best objective values found.

14

Conclusion

14

Conclusion

Turbo: General-purpose GPU constraint solver

• Simple: solving algorithms from 50 years ago.

⇒ no global constraints, nogoods learning, lazy clause generation, restart strategies, event-based

propagation, trailing or recomputation-based state restoration and domain consistency.

• Efficient: Almost on-par with Choco (algorithmic optimization VS hardware optimization).

• Many possible optimizations to improve the efficiency, but need to be redesigned for GPU.

https://github.com/ptal/turbo

But...

• Still lagging behind CP+SAT solvers, and SAT learning is inherently sequential...

• There is hope, apparently, search is not dead!

15

https://github.com/ptal/turbo

Conclusion

Turbo: General-purpose GPU constraint solver

• Simple: solving algorithms from 50 years ago.

⇒ no global constraints, nogoods learning, lazy clause generation, restart strategies, event-based

propagation, trailing or recomputation-based state restoration and domain consistency.

• Efficient: Almost on-par with Choco (algorithmic optimization VS hardware optimization).

• Many possible optimizations to improve the efficiency, but need to be redesigned for GPU.

https://github.com/ptal/turbo

But...

• Still lagging behind CP+SAT solvers, and SAT learning is inherently sequential...

• There is hope, apparently, search is not dead!

15

https://github.com/ptal/turbo

Divergence?

x
=

y
+

z

x
=

m
ax

(y
,z

)

x
=

(y
=

z)

x
=

y
z

x
=

m
in

(y
,z

)

x
=

y
*z

0=
(y

=
z)

Operators

accap

aircraft-disassembly

cable-tree-wiring

community-detection

compression

concert-hall-cap

fox-geese-corn

graph-clear

hoist-benchmark

monitor-placement-1id

neighbours

network_50_cstr

peacable_queens

portal

tiny-cvrp

train-scheduling

triangular

word-equations

Normalized Operator Usage Across Instances

0

20

40

60

80

100

The problems use few operators: limited divergence.

16

Lock-free Parallel Propagation

16

Example of Parallel Propagation9

Let’s consider IJx ≤ 4 ∧ x ≤ 5K = IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞,∞]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: fixpoint + fair scheduling + strict updates (if (v < x.ub) { x.ub = v; }).

9P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.

17

Example of Parallel Propagation9

Let’s consider IJx ≤ 4 ∧ x ≤ 5K = IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, ?]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: fixpoint + fair scheduling + strict updates (if (v < x.ub) { x.ub = v; }).

9P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.

17

Example of Parallel Propagation9

Let’s consider IJx ≤ 4 ∧ x ≤ 5K = IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, 4]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: fixpoint + fair scheduling + strict updates (if (v < x.ub) { x.ub = v; }).

9P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.

17

GPU Fixpoint Algorithm

__device__ void fixpoint(Store& d, Props* props, int n) {

__shared__ bool has_changed = true;

// Keep going until no variable domain is modified.

while(has_changed) {

__syncthreads(); has_changed = false; __syncthreads();

// Execute all propagators (similar to AC1)

for(int i = threadIdx.x; i < n; i += blockDim.x) {

has_changed |= props[i].propagate(d) ;

}

__syncthreads();

}

}

GPU Challenges

• Coalesced memory accesses of the propagator representation props[i].

• Avoiding divergence in propagate.

18

GPU Fixpoint Algorithm

__device__ void fixpoint(Store& d, Props* props, int n) {

__shared__ bool has_changed = true;

// Keep going until no variable domain is modified.

while(has_changed) {

__syncthreads(); has_changed = false; __syncthreads();

// Execute all propagators (similar to AC1)

for(int i = threadIdx.x; i < n; i += blockDim.x) {

has_changed |= props[i].propagate(d) ;

}

__syncthreads();

}

}

GPU Challenges

• Coalesced memory accesses of the propagator representation props[i].

• Avoiding divergence in propagate.

18

