Abstract Constraint Programming on GPU

TALK AT NATIONAL UNIVERSITY OF SINGAPORE, PROGRAMMING
LANGUAGE INNOVATION LAB (PROF. ADAMS GROUP)

Pierre Talbot
pierre.talbot@uni.lu
https://ptal.github.io

21st January 2026

University of Luxembourg

https://ptal.github.io

Who am I?

conuscape > =g e ¢
@ = ey [£0_Ghent il
Calais B 3 cc
South|Dow la e |
Southamptons 2tichal Park Brussels 1 L
Bournemouth. oo
2.0, Lille; Liege.
Posle o ¢
Mons i
o] Pt o< Belgium
amel -
g m.a
o Amiens
Jeer
Cherbourgen Cotentin s
lebiawe= 0 1
bocy i u eayvais)
= Reims ot
Jerse) ainto | S & o ¥
y. Sant (0 bm : ¥ Loy Metz i
.]
Qs
et {23 i PR i
Saint:Malo % Versailles X
) oh {as Nincy,
Parc naturel % 5]
- iégional il Troyes
du‘Perche oo @
Remnes Lo e 5 L=
~ o Le Mans
origans g « 2 Parc national
o
@ o m)
Angers. ° o 2 o1} Be
% Tours
N 3 240 % gesation
e 28 parcnatulgional BB pcnatiel =
chgle LoirerAnjouTouraie Bouges 1 dgional A z

2014: Master in CS/PL, Sorbonne University, Paris

2014-2018: Ph.D., Sorbonne University, Paris
» Spacetime Programming: A Synchronous Language
for Constraint Search.

2018-2019: Postdoc, University of Nantes.
» Abstract Domains for Constraint Programming.

2020-2023: Postdoc, University of Luxembourg
» A Lattice-Based Approach for GPU Programming.

2023—: Research scientist, University of Luxembourg.
» Abstract Satisfaction and Parallel Computing.

Why Am | Here?

Fixed-Point-Oriented Programming: A Concise and Elegant Paradigm

PROGRAMMING LANGUAGE INNOVATION LAB, National University of Singapore, Singapore

Fixed-Point-Oriented Programming (FPOP) is an emerging paradigm designed to streamline the implementation of problems involving

self-referential computations. These include graph algorithms, static analysis, parsing, and distributed computing—domains that

traditionally require complex and tricky-to-i work-queue algori Existing lack direct support
for these inherently fixed-point computations, leading to inefficient and error-prone implementations.

This white paper explores the potential of the FPOP paradigm, which offers a high-level abstraction that enables concise and

expressive problem formulations. By leveraging structured inference rules and user-directed optimizations, FPOP allows developers to

write declarative specifications while the compiler ensures efficient execution. It not only reduces implementation complexity for

but also enhances ity, making it easier for to explore solutions and

without modifying the core logic of their program
We demonstrate how FPOP simplifies algorithm implementation, improves maintainability, and enables rapid prototyping by
allowing problems to be clearly and concisely expressed. For example, the graph distance problem can be expressed in only two
executable lines of code with FPOP, while it takes an order of magnitude more code in other paradigms. By bridging the gap between

theoretical fixed-point formulations and practical implementations, we aim to foster further research and adoption of this paradigm.

[...] array-based problems are naturally solved by iteration and tree-based problems are
naturally solved by recursion, what is the natural paradigm for graph-based problems?

Why Am | Here?

ed-Point-Oriented Programming: A Concise and Elegant Paradigm

PROGRAMMING LANGUAGE INNOVATION LAB, National University of Singapore, Singapore

Fixed-Point-Oriented Programming (FPOP) is an emerging paradigm designed to streamline the implementation of problems involving
self-referential computations. These include graph algorithms, statie analysis, parsing, and distributed computing—domains that
traditionally require complex and tricky-to-implement wark-queue algorithms. Existing programming paradigms lack direct support
for these inherently fixed-point computations, leading to incfficient and error-prone implementations.

This white paper explores the potential of the FPOP paradigm, which offers a high-level abstraction that enables concise and
expressive problem formulations. By leveraging structured inference rules and user-directed optimizations, FPOP allows developers to
write deelarative specifications while the compiler ensures efficient execution. It not only reduces implementation complexity for

but also enhances y, making it easier for to explore alternative solutions and optimizations

without modifying the core logic of their program

We demonstrate how FPOP simplifies algorithm implementation, improves maintainability, and enables rapid prototyping by
allowing problems to be clearly and concisely expressed. For example, the graph distance problem can be expressed in only two
executable lines of code with FPOP, while it takes an order of magnitude more code in other paradigms. By bridging the gap between

thearetical fixed-point formulations and practical implementations, we aim to foster further research and adoption of this paradigm.

Examples of such problems include parsing, static analysis, type-checking, graph algo-
rithms, automata minimization, and distributed computing [...]

To this list, I'd like to add today constraint reasoning and parallel programming.

My Research in a Nutshell!

| research on the “fusion” of...

Constraint reasoning + Abstract interpretation
(and lattice theory)

BRUTE-FORCE DYNAMIC '
SOLUTTON: PROGRAMMING SELUNG ON ERAY:
0 (n \) ALGORITHMS: O(1
. 0 (n22")
STILL WORKING
ON YOUR ROUTE?
\
-~
SHUT THE
HEW UR

that gives us abstract satisfaction.

My Research in a Nutshell!

| research on the “fusion” of...

4)

WHY?
Accelerate constraint solving

HOW?
e Combining constraint solvers

e Constructing sound solving procedure over complex domains

e Constraint solving on GPUs

A J

that gives us abstract satisfaction.

My Research in a Nutshell!

| research on the “fusion” of...

s A

WHY?
Accelerate constraint solving

HOwW?
e Combining constraint solvers

e Constructing sound solving procedure over complex domains

e Constraint solving on GPUs <= TODAY

& J

that gives us abstract satisfaction.

TEAM

I have the pleasure to co-supervise and collaborate with several Master students, Ph.D. candidates and postdocs.

< 0

Pierre Talbot Hedieh Haddad Manuel Combarro Yi-Nung Tsao

Tobias Fischbach Hakan Hasan i
Wei Huang Anisa Meta

* Hasan Hakan, Ph.D. candidate, TBD, 2025-2028.

« Yi-Nung Tsao, Ph.D. candidate, Verification of Neural Networks by Abstract Interpretation, 2023-2027.
* Manuel Combarro, Ph.D. candidate, Multiobjective Constraint Programming, 2023-2026.

+ Hedieh Haddad, Ph.D. candidate, Hyperparameter Optimization of Constraint Solver, 2023-2026.

* Tobias Fischbach, Ph.D. candidate, Optimization of Quantum Circuits, 2023-2026.

+ Wei Huang, Master student, Improving Fixpoint Loop in Turbo (master thesis), March-August 2026.
* Anisa Meta, Master student, GPU-based Inprocessing in Turbo (master thesis), February—July 2026.

“I" I“ ‘ I Faculty of Science, Engish v Facules & Centres ~ Information for v 2
il Technology

UNIVERSITE DU . i) . -
LUXEMBOURG and Medicine Education Research Life on campus About Search Admissions

Home > Faculty of Science, Technology and Medicine > Study Prog > Master in High puting

Study Programmes

Master in High Performance Computing

Overview Programme Career Testimonials Teaching staff Admissions

Your outstanding career in

.
high-performance comput-
.

ing

The Master in High Performance Computing (MHPC) is a distinctive pro-
gramme at the intersection of parallel programming, hardware architecture,
and artificial intelligence. We are training the next generation of HPC experts
in Luxembourg and Europe. Besides to the MHPC, the EUMaster4HPC is an-
other programme where students earn a dual degree from two of the eight

universities of the EUMaster4HPC consortium. EUMaster4HPC has a different
application procedure, so be sure to check out the dedicated website

Lattice Theory for Parallel Programming

Description: Lattice theory is one of the most useful mathematical theories to describe and prove
of computer science starting with denotational semantics (what is a program from the mathematic
recently in parallel and distributed computing with conflict-free replicated data types (CRDTs) anc
incomplete view of the global state). CRDTs are widely used to program highly-available services fi

This course is given in the Master in High Performance Computing at the University of Luxembourgw
assistant).

The course is self-contained, only basic knowledge of set theory and logic is necessary. Half of the
lattice theory (given by myself).

Lectures on lattice theory (by Bruno) are available here

Lecture 1: Overview of the Course [pdf]

Lecture 2: Conflict-free Replicated Data Type [pdf] with a laboratory [pdf]
Lecture 3: More Conflict-free Replicated Data Type [pdf] with a laboratory [pdf]
Lecture 4: Parallel Lattice Programming [pdf]

Lecture 5: Abstract Satisfaction [pdf]

Lecture 6: Neural Network Verification [pdf]

Lecture 7: Abstract Interpretation [pdf]

Constraint Programming

Constraint Programming

Constraint programming: FOL without quantifiers, U = Z and arithmetic constraints.

Declarative paradigm: specify your problem and let the computer solves it for you.

Many applications: scheduling, bin-packing, hardware design, satellite imaging, ...

e Constraint programming is one approach to solve such combinatorial problems.

Other approaches include SAT, linear programming, SMT, MILP, ASP,...

5 Stateof the art

Satellite image mosaic

After a query with certain parameters:

N = 30 satellite images

Find the cover with the minimum number
of images (NP-Hard)

Build the mosaic

1

1Combarro et al., Constraint Model for the Satellite Image Mosaic Selection Problem, CP 2023

Constraint model of satellite imaging in MiniZinc:

O @& 5406 @ & .

New model Open Save Copy Cut Paste Redo Shift left Shift right Run

"HH

satellite.mzn (&) satellite1.dzn [}

41int: universe;

5

6set of int: IMAGES = 1..images;

7set of int: UNIVERSE = 1..universe;

8

garray[IMAGES] of set of int: sets;

10 array[IMAGES] of int: costs;

11

12 constraint forall(u in UNIVERSE)(

13 exists(i in IMAGES)(taken[i] /\ u in sets[i]));
14

15 array[IMAGES] of var bool: taken;

16

17 solve minimize sum(i in IMAGES)(costs[i] * taken[i]);

Output
Hide all | | dzn | default

« Running satellite.mzn, satellitel.dzn
taken = [true, true, false, true, true, false];

Finished in 114msec.

Solver configuratior

Gecode 6.3.0

10

Constraint Network

Constraint Network

Let X be a finite set of variables and C be a finite set of constraints.
A constraint network is a pair P = (d, C) such that d € X — [tv is the domain of the
variables where [tv is the set of intervals.

Note: It is just a "format” to represent quantifier-free logical formulas where variables have
bounded domains.

({x=100.2],y = [2,3]}, {x <y —1})
A solution is {x — 0,y — 2}.

Parallel Model of Computation

Parallel Model of Computation

[0..3]
g (/\
072 [5.3]

071 [[2.3]

f‘

[0.0] [I.7] [3.3]

4

o f(x) £ xn [2..00] models the constraint x > 2.
A

e g(x) = xT[—00..2] models the constraint x < 2.
e Parallel execution: £ || g = [2..2]

12

Example of Parallel Propagation

Let's consider Z[[x < 4] || Z[x < 5]

Memory: Propagators:

X + [—o00,4] (Z[x < 4])
[x=[-00,00] | | B« [-0,5] (Z[x <5])

13

Example of Parallel Propagation

Let's consider Z[[x < 4] || Z[x < 5]

Memory: Propagators:

’ X= [_007.]

X + [—o00,4] (Z[x < 4])
| | B [o05 (Zhx<5])

Issue 1: data race? Parallel update of the same variable: upper bound of x.

13

Example of Parallel Propagation

Let's consider Z[[x < 4] || Z[x < 5]

Memory: Propagators:
- X [-00,4] (Z[x < 4])
’ x = [—00,5] ‘ [l %« [0, 5] (Z[x < 5])

Issue 1: data race? Parallel update of the same variable: upper bound of x.
= Solution: Use atomic load and store!

13

Example of Parallel Propagation

Let's consider Z[[x < 4] || Z[x < 5]

Memory: Propagators:
- X [-00,4] (Z[x < 4])
’ x = [—00,5] ‘ [l %« [0, 5] (Z[x < 5])

Issue 1: data race? Parallel update of the same variable: upper bound of x.
= Solution: Use atomic load and store!
= In CUDA: Integer load and store are atomic by default!

13

Example of Parallel Propagation

Let's consider Z[[x < 4] || Z[x < 5]

Memory: Propagators:
X| < [-00,4] (Z[x<4])
’ X = [_OOa.] ‘ H X «— [foo’5] (I[X < 51])

Issue 1: data race? Parallel update of the same variable: upper bound of x.
= Solution: Use atomic load and store!
= In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [—oc0, 4] or [—00, 5] depending on the order of
execution.

13

Example of Parallel Propagation

Let's consider Z[[x < 4] || Z[x < 5]

Memory: Propagators:

X + [—o00,4] (Z[x < 4])
1 | B8« [-o0,5 (Z[x<5])

x = [—o0,

Issue 1: data race? Parallel update of the same variable: upper bound of x.
= Solution: Use atomic load and store!
= In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [—oc0, 4] or [—00, 5] depending on the order of
execution.
= Solution: Use a fixpoint loop.

13

Example of Parallel Propagation

Let's consider Z[[x < 4] || Z[x < 5]

Memory: Propagators:
- X [-00,4] (Z[x < 4])
x = [Foo || B« [-00,5] (Z[x<5])

Issue 1: data race? Parallel update of the same variable: upper bound of x.
= Solution: Use atomic load and store!
= In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [—oc0, 4] or [—00, 5] depending on the order of
execution.
= Solution: Use a fixpoint loop.

Issue 3: progress? What if Z[x < 5] is always “winning"?

13

Example of Parallel Propagation

Let's consider Z[[x < 4] || Z[x < 5]

Memory: Propagators:

X + [—o00,4] (Z[x < 4])
|| B« [-00,5] (Z[x<5])

Issue 1: data race? Parallel update of the same variable: upper bound of x.
= Solution: Use atomic load and store!
= In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [—oc0, 4] or [—00, 5] depending on the order of
execution.
= Solution: Use a fixpoint loop.

Issue 3: progress? What if Z[x < 5] is always “winning"?

= Solution: Write in the memory only if the value is strictly lower ([x] = v iff v < [x]). i

Parallel Model of Computation

[0.3]
g (/\
[0.2] [1.3] f

071 [12] [2.3]
[0.0] [1.] [3.3]

1

But what should be the properties of f and g7 How to design such functions?

14

Concurrent Constraint Programming

Concurrent constraint programming (CCP) is a process calculus introduced in the eighties®.
Two main operations: ask and tell.

Ask X>57

\
Tell £<4

Conceptual idea: allow to compute with partial information; replace the “Von Neumann”
memory model by a constraint store.

2V. A. Saraswat and M. Rinard, Concurrent constraint programming (POPL-89)

15

Syntax of CCP

Let x,x1,...,Xx, € X be variables, c, ¢, ... be constraints, p a predicate name.

(P, Q) i=) i ask(c) ? P; sum statement
| tell(c) tell statement
| 3Ix, P local statement
| Pl @ parallel composition
| p(xa, ..y xn) predicate call

(A, B) == p(x1,...,x,) =P predicate definition
| AB list of predicates

HX’ y) Z?

ask(y = 1) ? tell(z > 10)
[((ask(x =0) ? tell(y = 1)) + (ask(x =1) ? tell(y = 2)))

Sketch of Semantics

e A configuration is a pair (P, C) where P is a CCP process to execute, and C is a store of

constraint.
e A “step of execution” is given by a relation (P, C) — (P, C’).
TELL
(tell(c), C) — (tell(c), C U{c})
PAR-LEFT
(P,C) = (P, C)
(Pl @C)—(P|QC)

PAR-RIGHT
(Q,C) = (@, C")
(Pl @C)—(P|Q,C)

Monotonicity: — is monotone over the store of constraints, in particular it means:

e If ask(c) is true in a store C then it is true in every store C’ such that C C C’.

Extensive: — is extensive over the store of constraints (we cannot remove information).

Closure operator: —* is a closure operator over the store.3

Restartable: Suppose we perform a partial execution (P, C) — ... — (P’, C’), then we
can restart the execution from (P, C’) (and obtain the same result).

3Supposing the branches of the sum are all disjoints—called determinate CCP.

18

Parallel CCP

Parallel Concurrent Constraint Programming (PCCP)

Observation: CCP lacks a proper connection to parallel architecture, and had limited impact despite a

beautiful theory.
We worked on that by simplifying the language (no recursion) and using lattice to define constraint

system*.

4P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU (AAAI 2022)
19

Parallel Concurrent Constraint Programming (PCCP)

Observation: CCP lacks a proper connection to parallel architecture, and had limited impact despite a
beautiful theory.

We worked on that by simplifying the language (no recursion) and using lattice to define constraint
system*.

Syntax of PCCP

Let x,y,y1,...,yn € X be variables, L a lattice, f a monotone function, and b a Boolean variable of
type ({true, false}, <):

(P, Q) = if b then P ask statement
X 4= f(y1, .. ¥n) tell statement

| 3IxL, P local statement

| PlIQ parallel composition

4P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU (AAAI 2022)

Examples: Minimum and Constraint

Let ZUB the lattice of increasing integers, and ZLB the lattice of decreasing integers.

Im:ZUB, m<xi || ... || m < x, (unfolded for-loop)

x + y < c constraint

Suppose the variables x and y are defined by four variables x/, xu, yl, yu modelling the
intervals [x/, xu] and [y/, yu].

[x+y<c] & xu<c—yl|yu+c—xl

(see lecture on “abstract satisfaction”).

Denotational Semantics

e A PCCP process is a reductive and monotone function over a Cartesian product
Store = Ly x ... x L, storing the values of all local variables.

e Since we do not have recursion, we know at compile-time the number of variables.

e Let Proc be the set of all PCCP processes.

21

Denotational Semantics

e A PCCP process is a reductive and monotone function over a Cartesian product
Store = Ly x ... x L, storing the values of all local variables.

e Since we do not have recursion, we know at compile-time the number of variables.

e Let Proc be the set of all PCCP processes.

Denotational Semantics

We define a function D : Proc — (Store — Store):

D(x < f(y1,.,¥n)) = As.s[x = s(x) M1 F(s(y1), .., s(vn))]
D(if b then P) £ Xs.(s(b)? D(P)(s)ss)
D(P || Q) £ D(P)ND(Q)

Executing the program: gfp D(P).

Sequential Computation = Parallel Computation

We obtain the same result if we execute P in parallel or if we replace all parallel || by a
sequential operator ; (a transformation we write seq P) defined as follows:

D(P; Q) £ D(Q) o D(P)

Let fix f be the set of fixpoints of a function 7.

Theorem (Equivalence Between Sequential and Parallel Operators)

fix D(seq P) = fix D(P)

22

Conclusion

C++ Abstraction: Lattice Land Project

lattice-land is a collection of libraries abstracting our parallel model.

It provides various data types and fixpoint engine:

e ZLB, ZUB: increasing/decreasing integers.

e B: Boolean lattices.

e VStore: Array (of lattice elements).

e IPC: Arithmetic constraints.

e GaussSeidelIteration: Sequential CPU fixed point loop.
e AsynchronousIteration: GPU-accelerated fixed point loop.
o ...

void max(int tid, const int* data, ZLB& m) {
m.tell(dataltid]);
}

AsynchronousIteration::fixpoint (max);

O https://github.com/lattice-land 2

https://github.com/lattice-land

Conclusi Theoretical Parallel Model of Computation

Data races occur rarely, so we should avoid working so much to avoid
them.

Properties of the model

A Variant of Concurrent Constraint Programming on GPU (AAAI 2022)3.

e Correct: Proofs that P; Q = P||Q, parallel and sequential versions produce the same results.
e Restartable: Stop the program at any time, and restart on partial data.

e \Weak memory consistency: Very few requirements on the underlying memory model = wide
compatibility across hardware, unlock optimization.

Shttps://ptal.github.io/papers/aaai2022.pdf
24

https://ptal.github.io/papers/aaai2022.pdf

Conclusion: Practical Implementation

A GPU-based Constraint Programming Solver (AAAl 2026)5.

e Simple: solving algorithms from 50 years ago.
= no global constraints, nogoods learning, lazy clause generation, restart strategies, event-based
propagation, trailing or recomputation-based state restoration and domain consistency.

e Efficient: Almost on-par with Choco (algorithmic optimization VS hardware optimization).

e Many possible optimizations to improve the efficiency, but need to be redesigned for GPU.

https://github.com/ptal/turbo
Shttps://ptal.github.io/papers/aaai2026.pdf

25

https://github.com/ptal/turbo
https://ptal.github.io/papers/aaai2026.pdf

