
Abstract Constraint Programming on GPU

Talk at National University of Singapore, Programming

Language Innovation Lab (Prof. Adams group)

Pierre Talbot

pierre.talbot@uni.lu

https://ptal.github.io

21st January 2026

University of Luxembourg

https://ptal.github.io

Who am I?

• 2014: Master in CS/PL, Sorbonne University, Paris

• 2014–2018: Ph.D., Sorbonne University, Paris

▶ Spacetime Programming: A Synchronous Language

for Constraint Search.

• 2018–2019: Postdoc, University of Nantes.

▶ Abstract Domains for Constraint Programming.

• 2020–2023: Postdoc, University of Luxembourg

▶ A Lattice-Based Approach for GPU Programming.

• 2023–: Research scientist, University of Luxembourg.

▶ Abstract Satisfaction and Parallel Computing.

1

Why Am I Here?

[...] array-based problems are naturally solved by iteration and tree-based problems are

naturally solved by recursion, what is the natural paradigm for graph-based problems?

2

Why Am I Here?

Examples of such problems include parsing, static analysis, type-checking, graph algo-

rithms, automata minimization, and distributed computing [...]

To this list, I’d like to add today constraint reasoning and parallel programming.

3

My Research in a Nutshell!

I research on the “fusion” of...

Constraint reasoning + Abstract interpretation

(and lattice theory)

that gives us abstract satisfaction.

WHY?

Accelerate constraint solving

HOW?

• Combining constraint solvers

• Constructing sound solving procedure over complex domains

•

4

My Research in a Nutshell!

I research on the “fusion” of...

Constraint reasoning + Abstract interpretation

(and lattice theory)

that gives us abstract satisfaction.

WHY?

Accelerate constraint solving

HOW?

• Combining constraint solvers

• Constructing sound solving procedure over complex domains

• Constraint solving on GPUs

4

My Research in a Nutshell!

I research on the “fusion” of...

Constraint reasoning + Abstract interpretation

(and lattice theory)

that gives us abstract satisfaction.

WHY?

Accelerate constraint solving

HOW?

• Combining constraint solvers

• Constructing sound solving procedure over complex domains

• Constraint solving on GPUs ⇐ today

4

5

6

7

Constraint Programming

7

Constraint Programming

Constraint programming: FOL without quantifiers, U = Z and arithmetic constraints.

• Declarative paradigm: specify your problem and let the computer solves it for you.

• Many applications: scheduling, bin-packing, hardware design, satellite imaging, . . .

• Constraint programming is one approach to solve such combinatorial problems.

• Other approaches include SAT, linear programming, SMT, MILP, ASP,...

8

5

Satellite image mosaic

State of the art

After a query with certain parameters:

N = 30 satellite images

Find the cover with the minimum number
of images (NP-Hard)

Build the mosaic

1

1Combarro et al., Constraint Model for the Satellite Image Mosaic Selection Problem, CP 2023

9

Constraint model of satellite imaging in MiniZinc:

10

Constraint Network

Constraint Network

Let X be a finite set of variables and C be a finite set of constraints.

A constraint network is a pair P = ⟨d ,C ⟩ such that d ∈ X → Itv is the domain of the

variables where Itv is the set of intervals.

Note: It is just a ”format” to represent quantifier-free logical formulas where variables have

bounded domains.

Example

⟨{x 7→ [0, 2], y 7→ [2, 3]}, {x ≤ y − 1}⟩

A solution is {x 7→ 0, y 7→ 2}.

11

Parallel Model of Computation

11

Parallel Model of Computation

f

g

[0..3]

[1..3]

[2..3]

[3..3]

⊥

[0..2]

[0..1] [1..2]

[0..0] [1..1] [2..2]

• f (x) ≜ x ⊓ [2..∞] models the constraint x ≥ 2.

• g(x) ≜ x ⊓ [−∞..2] models the constraint x ≤ 2.

• Parallel execution: f || g = [2..2]

12

Example of Parallel Propagation

Let’s consider IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞,∞]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).

13

Example of Parallel Propagation

Let’s consider IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, ?]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).

13

Example of Parallel Propagation

Let’s consider IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, 5]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).

13

Example of Parallel Propagation

Let’s consider IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, 5]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).

13

Example of Parallel Propagation

Let’s consider IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, 5]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).

13

Example of Parallel Propagation

Let’s consider IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, 4]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).

13

Example of Parallel Propagation

Let’s consider IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, 5]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).

13

Example of Parallel Propagation

Let’s consider IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, 4]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).
13

Parallel Model of Computation

f

g

[0..3]

[1..3]

[2..3]

[3..3]

⊥

[0..2]

[0..1] [1..2]

[0..0] [1..1] [2..2]

But what should be the properties of f and g? How to design such functions?

14

Concurrent Constraint Programming

14

Concurrent constraint programming (CCP) is a process calculus introduced in the eighties2.

Two main operations: ask and tell.

X = 8
Z > 2

Ask X > 5 ?

Z < 4Tell

Conceptual idea: allow to compute with partial information; replace the “Von Neumann”

memory model by a constraint store.

2V. A. Saraswat and M. Rinard, Concurrent constraint programming (POPL-89)

15

Syntax of CCP

Let x , x1, . . . , xn ∈ X be variables, c , c1, . . . be constraints, p a predicate name.

⟨P, Q⟩ ::=
∑

i∈I ask(ci) ? Pi sum statement

| tell(c) tell statement

| ∃x , P local statement

| P ∥ Q parallel composition

| p(x1, . . . , xn) predicate call

⟨A, B⟩ ::= p(x1, . . . , xn) = P predicate definition

| A B list of predicates

Example

∃x , y , z ,
ask(y = 1) ? tell(z > 10)

∥ ((ask(x = 0) ? tell(y = 1)) + (ask(x = 1) ? tell(y = 2)))

16

Sketch of Semantics

Definitions

• A configuration is a pair ⟨P,C ⟩ where P is a CCP process to execute, and C is a store of

constraint.

• A “step of execution” is given by a relation ⟨P,C ⟩ → ⟨P ′,C ′⟩.

tell

⟨tell(c),C ⟩ → ⟨tell(c),C ∪ {c}⟩

par-left

⟨P,C ⟩ → ⟨P ′,C ′⟩
⟨P ∥ Q,C ⟩ → ⟨P ′ ∥ Q,C ′⟩

par-right

⟨Q,C ⟩ → ⟨Q ′,C ′⟩
⟨P ∥ Q,C ⟩ → ⟨P ∥ Q ′,C ′⟩

17

Main Properties

• Monotonicity : → is monotone over the store of constraints, in particular it means:

• If ask(c) is true in a store C then it is true in every store C ′ such that C ⊆ C ′.

• Extensive: → is extensive over the store of constraints (we cannot remove information).

• Closure operator : →∗ is a closure operator over the store.3

• Restartable: Suppose we perform a partial execution ⟨P,C ⟩ → . . .→ ⟨P ′,C ′⟩, then we

can restart the execution from ⟨P,C ′⟩ (and obtain the same result).

3Supposing the branches of the sum are all disjoints—called determinate CCP.

18

Parallel CCP

18

Parallel Concurrent Constraint Programming (PCCP)

Observation: CCP lacks a proper connection to parallel architecture, and had limited impact despite a

beautiful theory.

We worked on that by simplifying the language (no recursion) and using lattice to define constraint

system4.

Syntax of PCCP

Let x , y , y1, . . . , yn ∈ X be variables, L a lattice, f a monotone function, and b a Boolean variable of

type ⟨{true, false},⇐⟩:

⟨P, Q⟩ ::= if b then P ask statement

| x ← f (y1, ..., yn) tell statement

| ∃x :L, P local statement

| P ∥ Q parallel composition

4P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU (AAAI 2022)

19

Parallel Concurrent Constraint Programming (PCCP)

Observation: CCP lacks a proper connection to parallel architecture, and had limited impact despite a

beautiful theory.

We worked on that by simplifying the language (no recursion) and using lattice to define constraint

system4.

Syntax of PCCP

Let x , y , y1, . . . , yn ∈ X be variables, L a lattice, f a monotone function, and b a Boolean variable of

type ⟨{true, false},⇐⟩:

⟨P, Q⟩ ::= if b then P ask statement

| x ← f (y1, ..., yn) tell statement

| ∃x :L, P local statement

| P ∥ Q parallel composition

4P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU (AAAI 2022)

19

Examples: Minimum and Constraint

Let ZUB the lattice of increasing integers, and ZLB the lattice of decreasing integers.

Minimum

∃m : ZUB, m← x1 ∥ . . . ∥ m← xn (unfolded for-loop)

x + y ≤ c constraint

Suppose the variables x and y are defined by four variables xl , xu, yl , yu modelling the

intervals [xl , xu] and [yl , yu].

Jx + y ≤ cK ≜ xu ← c − yl ∥ yu ← c − xl

(see lecture on “abstract satisfaction”).

20

Denotational Semantics

• A PCCP process is a reductive and monotone function over a Cartesian product

Store = L1 × . . .× Ln storing the values of all local variables.

• Since we do not have recursion, we know at compile-time the number of variables.

• Let Proc be the set of all PCCP processes.

Denotational Semantics

We define a function D : Proc → (Store → Store):

D(x ← f (y1, .., yn)) ≜ λs.s[x 7→ s(x) ⊓ f (s(y1), .., s(yn))]

D(if b then P) ≜ λs.L s(b) D(P)(s) s M
D(P ∥ Q) ≜ D(P) ⊓ D(Q)

Executing the program: gfp D(P).

21

Denotational Semantics

• A PCCP process is a reductive and monotone function over a Cartesian product

Store = L1 × . . .× Ln storing the values of all local variables.

• Since we do not have recursion, we know at compile-time the number of variables.

• Let Proc be the set of all PCCP processes.

Denotational Semantics

We define a function D : Proc → (Store → Store):

D(x ← f (y1, .., yn)) ≜ λs.s[x 7→ s(x) ⊓ f (s(y1), .., s(yn))]

D(if b then P) ≜ λs.L s(b) D(P)(s) s M
D(P ∥ Q) ≜ D(P) ⊓ D(Q)

Executing the program: gfp D(P).

21

Sequential Computation = Parallel Computation

We obtain the same result if we execute P in parallel or if we replace all parallel ∥ by a

sequential operator ; (a transformation we write seq P) defined as follows:

D(P ; Q) ≜ D(Q) ◦ D(P)

Let fix f be the set of fixpoints of a function f .

Theorem (Equivalence Between Sequential and Parallel Operators)

fix D(seq P) = fix D(P)

22

Conclusion

22

C++ Abstraction: Lattice Land Project

lattice-land is a collection of libraries abstracting our parallel model.

It provides various data types and fixpoint engine:

• ZLB, ZUB: increasing/decreasing integers.

• B: Boolean lattices.

• VStore: Array (of lattice elements).

• IPC: Arithmetic constraints.

• GaussSeidelIteration: Sequential CPU fixed point loop.

• AsynchronousIteration: GPU-accelerated fixed point loop.

• . . .

void max(int tid, const int* data, ZLB& m) {

m.tell(data[tid]);

}

AsynchronousIteration::fixpoint(max);

https://github.com/lattice-land
23

https://github.com/lattice-land

Conclusion: Theoretical Parallel Model of Computation

Data races occur rarely, so we should avoid working so much to avoid
them.

Properties of the model

A Variant of Concurrent Constraint Programming on GPU (AAAI 2022)5.

• Correct: Proofs that P;Q ≡ P||Q, parallel and sequential versions produce the same results.

• Restartable: Stop the program at any time, and restart on partial data.

• Weak memory consistency: Very few requirements on the underlying memory model ⇒ wide

compatibility across hardware, unlock optimization.

5https://ptal.github.io/papers/aaai2022.pdf

24

https://ptal.github.io/papers/aaai2022.pdf

Conclusion: Practical Implementation

A GPU-based Constraint Programming Solver (AAAI 2026)6.

• Simple: solving algorithms from 50 years ago.

⇒ no global constraints, nogoods learning, lazy clause generation, restart strategies, event-based

propagation, trailing or recomputation-based state restoration and domain consistency.

• Efficient: Almost on-par with Choco (algorithmic optimization VS hardware optimization).

• Many possible optimizations to improve the efficiency, but need to be redesigned for GPU.

https://github.com/ptal/turbo

6https://ptal.github.io/papers/aaai2026.pdf

25

https://github.com/ptal/turbo
https://ptal.github.io/papers/aaai2026.pdf

