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Who am I?

• 2014: Master in CS/PL, Sorbonne University, Paris

• 2014–2018: Ph.D., Sorbonne University, Paris

▶ Spacetime Programming: A Synchronous Language

for Constraint Search.

• 2018–2019: Postdoc, University of Nantes.

▶ Abstract Domains for Constraint Programming.

• 2020–2023: Postdoc, University of Luxembourg

▶ A Lattice-Based Approach for GPU Programming.

• 2023–: Research scientist, University of Luxembourg.

▶ Abstract Satisfaction and Parallel Computing.
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Why Am I Here?

[...] array-based problems are naturally solved by iteration and tree-based problems are

naturally solved by recursion, what is the natural paradigm for graph-based problems?
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Why Am I Here?

Examples of such problems include parsing, static analysis, type-checking, graph algo-

rithms, automata minimization, and distributed computing [...]

To this list, I’d like to add today constraint reasoning and parallel programming.
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My Research in a Nutshell!

I research on the “fusion” of...

Constraint reasoning + Abstract interpretation

(and lattice theory)

that gives us abstract satisfaction.

WHY?

Accelerate constraint solving

HOW?

• Combining constraint solvers

• Constructing sound solving procedure over complex domains

•
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Constraint Programming
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Constraint Programming

Constraint programming: FOL without quantifiers, U = Z and arithmetic constraints.

• Declarative paradigm: specify your problem and let the computer solves it for you.

• Many applications: scheduling, bin-packing, hardware design, satellite imaging, . . .

• Constraint programming is one approach to solve such combinatorial problems.

• Other approaches include SAT, linear programming, SMT, MILP, ASP,...
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5

Satellite image mosaic

State of the art

After a query with certain parameters:

N = 30 satellite images

Find the cover with the minimum number 
of images (NP-Hard)

Build the mosaic

1

1Combarro et al., Constraint Model for the Satellite Image Mosaic Selection Problem, CP 2023
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Constraint model of satellite imaging in MiniZinc:
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Constraint Network

Constraint Network

Let X be a finite set of variables and C be a finite set of constraints.

A constraint network is a pair P = ⟨d ,C ⟩ such that d ∈ X → Itv is the domain of the

variables where Itv is the set of intervals.

Note: It is just a ”format” to represent quantifier-free logical formulas where variables have

bounded domains.

Example

⟨{x 7→ [0, 2], y 7→ [2, 3]}, {x ≤ y − 1}⟩

A solution is {x 7→ 0, y 7→ 2}.
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Parallel Model of Computation
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Parallel Model of Computation

f

g

[0..3]

[1..3]

[2..3]

[3..3]

⊥

[0..2]

[0..1] [1..2]

[0..0] [1..1] [2..2]

• f (x) ≜ x ⊓ [2..∞] models the constraint x ≥ 2.

• g(x) ≜ x ⊓ [−∞..2] models the constraint x ≤ 2.

• Parallel execution: f || g = [2..2]
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Example of Parallel Propagation

Let’s consider IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞,∞]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).
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Parallel Model of Computation

f

g

[0..3]

[1..3]

[2..3]

[3..3]

⊥

[0..2]

[0..1] [1..2]

[0..0] [1..1] [2..2]

But what should be the properties of f and g? How to design such functions?
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Concurrent Constraint Programming
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Concurrent constraint programming (CCP) is a process calculus introduced in the eighties2.

Two main operations: ask and tell.

X = 8
Z > 2

Ask X > 5 ?

Z < 4Tell

Conceptual idea: allow to compute with partial information; replace the “Von Neumann”

memory model by a constraint store.

2V. A. Saraswat and M. Rinard, Concurrent constraint programming (POPL-89)
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Syntax of CCP

Let x , x1, . . . , xn ∈ X be variables, c , c1, . . . be constraints, p a predicate name.

⟨P, Q⟩ ::=
∑

i∈I ask(ci ) ? Pi sum statement

| tell(c) tell statement

| ∃x , P local statement

| P ∥ Q parallel composition

| p(x1, . . . , xn) predicate call

⟨A, B⟩ ::= p(x1, . . . , xn) = P predicate definition

| A B list of predicates

Example

∃x , y , z ,
ask(y = 1) ? tell(z > 10)

∥ ((ask(x = 0) ? tell(y = 1)) + (ask(x = 1) ? tell(y = 2)))
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Sketch of Semantics

Definitions

• A configuration is a pair ⟨P,C ⟩ where P is a CCP process to execute, and C is a store of

constraint.

• A “step of execution” is given by a relation ⟨P,C ⟩ → ⟨P ′,C ′⟩.

tell

⟨tell(c),C ⟩ → ⟨tell(c),C ∪ {c}⟩

par-left

⟨P,C ⟩ → ⟨P ′,C ′⟩
⟨P ∥ Q,C ⟩ → ⟨P ′ ∥ Q,C ′⟩

par-right

⟨Q,C ⟩ → ⟨Q ′,C ′⟩
⟨P ∥ Q,C ⟩ → ⟨P ∥ Q ′,C ′⟩
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Main Properties

• Monotonicity : → is monotone over the store of constraints, in particular it means:

• If ask(c) is true in a store C then it is true in every store C ′ such that C ⊆ C ′.

• Extensive: → is extensive over the store of constraints (we cannot remove information).

• Closure operator : →∗ is a closure operator over the store.3

• Restartable: Suppose we perform a partial execution ⟨P,C ⟩ → . . .→ ⟨P ′,C ′⟩, then we

can restart the execution from ⟨P,C ′⟩ (and obtain the same result).

3Supposing the branches of the sum are all disjoints—called determinate CCP.
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Parallel CCP
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Parallel Concurrent Constraint Programming (PCCP)

Observation: CCP lacks a proper connection to parallel architecture, and had limited impact despite a

beautiful theory.

We worked on that by simplifying the language (no recursion) and using lattice to define constraint

system4.

Syntax of PCCP

Let x , y , y1, . . . , yn ∈ X be variables, L a lattice, f a monotone function, and b a Boolean variable of

type ⟨{true, false},⇐⟩:

⟨P, Q⟩ ::= if b then P ask statement

| x ← f (y1, ..., yn) tell statement

| ∃x :L, P local statement

| P ∥ Q parallel composition

4P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU (AAAI 2022)
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Examples: Minimum and Constraint

Let ZUB the lattice of increasing integers, and ZLB the lattice of decreasing integers.

Minimum

∃m : ZUB, m← x1 ∥ . . . ∥ m← xn (unfolded for-loop)

x + y ≤ c constraint

Suppose the variables x and y are defined by four variables xl , xu, yl , yu modelling the

intervals [xl , xu] and [yl , yu].

Jx + y ≤ cK ≜ xu ← c − yl ∥ yu ← c − xl

(see lecture on “abstract satisfaction”).
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Denotational Semantics

• A PCCP process is a reductive and monotone function over a Cartesian product

Store = L1 × . . .× Ln storing the values of all local variables.

• Since we do not have recursion, we know at compile-time the number of variables.

• Let Proc be the set of all PCCP processes.

Denotational Semantics

We define a function D : Proc → (Store → Store):

D(x ← f (y1, .., yn)) ≜ λs.s[x 7→ s(x) ⊓ f (s(y1), .., s(yn))]

D(if b then P) ≜ λs.L s(b) D(P)(s) s M
D(P ∥ Q) ≜ D(P) ⊓ D(Q)

Executing the program: gfp D(P).
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Sequential Computation = Parallel Computation

We obtain the same result if we execute P in parallel or if we replace all parallel ∥ by a

sequential operator ; (a transformation we write seq P) defined as follows:

D(P ; Q) ≜ D(Q) ◦ D(P)

Let fix f be the set of fixpoints of a function f .

Theorem (Equivalence Between Sequential and Parallel Operators)

fix D(seq P) = fix D(P)
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Conclusion
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C++ Abstraction: Lattice Land Project

lattice-land is a collection of libraries abstracting our parallel model.

It provides various data types and fixpoint engine:

• ZLB, ZUB: increasing/decreasing integers.

• B: Boolean lattices.

• VStore: Array (of lattice elements).

• IPC: Arithmetic constraints.

• GaussSeidelIteration: Sequential CPU fixed point loop.

• AsynchronousIteration: GPU-accelerated fixed point loop.

• . . .

void max(int tid, const int* data, ZLB& m) {

m.tell(data[tid]);

}

AsynchronousIteration::fixpoint(max);

https://github.com/lattice-land
23

https://github.com/lattice-land


Conclusion: Theoretical Parallel Model of Computation

Data races occur rarely, so we should avoid working so much to avoid
them.

Properties of the model

A Variant of Concurrent Constraint Programming on GPU (AAAI 2022)5.

• Correct: Proofs that P;Q ≡ P||Q, parallel and sequential versions produce the same results.

• Restartable: Stop the program at any time, and restart on partial data.

• Weak memory consistency: Very few requirements on the underlying memory model ⇒ wide

compatibility across hardware, unlock optimization.

5https://ptal.github.io/papers/aaai2022.pdf
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Conclusion: Practical Implementation

A GPU-based Constraint Programming Solver (AAAI 2026)6.

• Simple: solving algorithms from 50 years ago.

⇒ no global constraints, nogoods learning, lazy clause generation, restart strategies, event-based

propagation, trailing or recomputation-based state restoration and domain consistency.

• Efficient: Almost on-par with Choco (algorithmic optimization VS hardware optimization).

• Many possible optimizations to improve the efficiency, but need to be redesigned for GPU.

https://github.com/ptal/turbo

6https://ptal.github.io/papers/aaai2026.pdf
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