Ternary Constraint Network for Efficient Bound Propagation on GPU

Special Meeting 2

Pierre Talbot
pierre.talbot@uni.lu
https://ptal.github.io
20 June 2025

University of Luxembourg

UNIVERSITÉ DU LUXEMBOURG

Why CP on GPU?

CPU clock speed is stagnating, GPU #cores is increasing quickly each year.

#Cores on Nvidia Tesla cards

Easy speed-up: same code but faster.

- Machine learning (deep learning, reinforcement learning, ...) has seen tremendous speed-ups (e.g. 100x, 1000x) by using GPU.
- Some (sequential) optimizations on CPU are made irrelevant if we can explore huge state space faster.

Can we replicate the success of GPU on machine learning applications to combinatorial optimization?

Record-Breaking NVIDIA cuOpt Algorithms Deliver Route Optimization Solutions 100x Faster

Mar 20, 2024

🖒 +20 Like 🛛 🤎 Discuss (0)

By Akif Çördük, Piotr Sielski and Moon Chung

Cool, but specialized combinatorial algorithm for routing.

cuOpt: Nvidia Linear Programming Solver

Mittleman's Benchmark cuOpt acceleration compared to state-of-the-art CPU LP (higher is better)

Use a new linear solving algorithm primal-dual hybrid gradient (PDHG/PDPL) (2011, 2021) which relies on matrix multiplication.

https://developer.nvidia.com/blog/accelerate-large-linear-programming-problems-with-nvidia-cuopt/

cuOpt: Nvidia Hybrid MIP Solver

Relaxation on GPU, search on CPU.

https://www.nvidia.com/en-us/on-demand/session/gtc25-s72290/

cuOpt: Nvidia Hybrid MIP Solver

MIPLIB Benchmarks

Test set of 240 MIPLIB problems

What about a general constraint solving framework? SAT? SMT? CP?

34 🚳 NVIDIA.

Relaxation on GPU, search on CPU.

https://www.nvidia.com/en-us/on-demand/session/gtc25-s72290/

Very scarce literature, usually:

- Heuristics: often population-based algorithms¹.
- Limited set of problems²
- Limited GPU parallelization: offloading to GPU specialized filtering procedures^{3,4}.
- Limited expressivity: solver with max 256 set variables⁵.

For CP-based approach: not general and no proof of correctness.

¹A. Arbelaez and P. Codognet, *A GPU Implementation of Parallel Constraint-Based Local Search*, PDP, 2014. ²Jan Gmys. Exactly Solving Hard Permutation Flowshop Scheduling Problems on Peta-Scale GPU-Accelerated Supercomputers. INFORMS Journal on Computing, 2022.

³F. Campeotto et al., *Exploring the use of GPUs in constraint solving*, PADL, 2014

⁴F. Tardivo et al., *Constraint propagation on GPU: A case study for the AllDifferent constraint*, Journal of Logic and Computation, 2023.

⁵A. Dovier et al., CUDA: Set Constraints on GPUs, 2022.

Contributions

- Ternary constraint network: representation of constraints suited for GPU architectures.
- Search on GPU: distributing one subproblem per GPU block.
- First general constraint solver fully executing on GPU.
 - \Rightarrow **Open-source**: Publicly available on https://github.com/ptal/turbo.
 - \Rightarrow **General**: Support MiniZinc and XCSP3 constraint models.
 - \Rightarrow Efficient?: Almost on-par with Choco (23% better, 28% worst, 49% equal).

The rest of this talk:

- GPU Architecture.
- Challenges of Constraint Programming on GPU.
- Parallel Model of Computation.
- Ternary Constraint Network.

Constraint Programming

Constraint Network

Let X be a finite set of variables and C be a finite set of constraints.

A constraint network is a pair $P = \langle d, C \rangle$ such that $d \in X \to Itv$ is the domain of the variables where Itv is the set of intervals.

Example

$$\langle \{x\mapsto [0,2], y\mapsto [2,3]\}, \{x\leq y-1\}\rangle$$

A solution is $\{x \mapsto 0, y \mapsto 2\}$.

Let c be a constraint, then a propagator is a sound and monotone function:

- $\mathcal{I}\llbracket c \rrbracket \in (X \to Itv) \to (X \to Itv)$
- **Example**: let $d = \{x \mapsto [0, 5], y \mapsto [5, 10]\}$, then $\mathcal{I}[x = y]d = \{x \mapsto [5, 5], y \mapsto [5, 5]\}$.

Let $\langle d, \{c_1, \ldots, c_n\} \rangle$ be a constraint network, propagation is the computation of the greatest fixpoint:

$$\mathbf{gfp}_d \mathcal{I}\llbracket c_1 \rrbracket \circ \ldots \circ \mathcal{I}\llbracket c_n \rrbracket$$

The main algorithm behind constraint solvers:

```
function SOLVE(d, {c_1, \ldots, c_n})

d \leftarrow \mathbf{gfp}_d \mathcal{I}\llbracket c_1 \rrbracket \circ \ldots \circ \mathcal{I}\llbracket c_n \rrbracket

if \forall x \in X, \ d(x) = [v, v] then return {d}

else if \exists x \in X, \ d(x) = \bot then return {}

else

\langle d_1, \ldots, d_n \rangle \leftarrow \text{split}(d)

return \bigcup_{i=1}^n \text{solve}(d_i, C)

end if

end function
```

Thanks to the split function, the algorithm is sound and complete.

GPU Architecture

5120 cores on a single V100 GPU @ 1290MHz

Whitepaper: https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

- Memory coalescence: the way to access the data is important (factor 10).
- **Thread divergence**: each thread within a warp (group of 32 threads) should execute the same instructions.
- **Memory allocation** (dynamic data structures): costly on GPU, everything is generally pre-allocated.
- Other limitations: small cache, limited number of lines of code, limited STL...

Each thread computes its local min (map), then we compute the min of all local min (reduce).

• Map:

3	22	10	23	21	7	91	1	3	10	42	11	8	7	32
Thread 0, $m_0 = 3$				TI	Thread 1, $m_1 = 1$				nread 2	, m ₂ =	Thread 3, $m_3 = 7$			

Iteration 1:

• Map:

Iteration 2:

• Map:

Iteration 3:

• Map:

Iteration 4:

• Map:

3	22	10	23	21	7	91	1	3	10	42	11	8	7	32
T ₀	T_1	T_2	T_3	T_0	T_1	T_2	T_3	T_0	T_1	T_2	T_3	T_0	T_1	T_2

3	22	10	23	21	7	91	1	3	10	42	11	8	7	32
T_0	T_1	T_2	T_3	T_0	T_1	T_2	T_3	T_0	T_1	T_2	T_3	T_0	T_1	T_2

Challenges of Constraint Programming on GPU

On CPU: Embarrasingly Parallel Search (EPS)⁶

- Idea: Divide the problem into many subproblems beforehand (e.g. $N \times 30$ with N the number of threads).
- Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other subproblems.

⁶A. Malapert et al., 'Embarrassingly Parallel Search in Constraint Programming', JAIR, 2016

On CPU: Embarrasingly Parallel Search (EPS)

- Idea: Divide the problem into many subproblems beforehand (e.g. $N \times 30$ with N the number of threads).
- Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other subproblems.

 \Rightarrow **Other approach:** In modern solvers (e.g., Choco, OR-Tools), they use a portfolio approach (e.g., different *split* strategy on the *same problem*).

On CPU: Embarrasingly Parallel Search (EPS)

- Idea: Divide the problem into many subproblems beforehand (e.g. $N \times 30$ with N the number of threads).
- Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other subproblems.

On GPU architectures, 1 subproblem per thread is not efficient (limited cache). \Rightarrow Need to parallelize propagation: $\mathbf{gfp}_d \mathcal{I}[\![c_1]\!] \circ \ldots \circ \mathcal{I}[\![c_n]\!]$. Parallelizing $\mathbf{gfp}_d \mathcal{I}[\![c_1]\!] \circ \ldots \circ \mathcal{I}[\![c_n]\!]$ is challenging because constraints share variables, and we have typical *shared state memory* issues such as data races and inefficiencies.

Solution

- Lock-free parallel model of computation to execute propagators in parallel⁶: gfp_d $\mathcal{I}[\![c_1]\!] \parallel \ldots \parallel \mathcal{I}[\![c_n]\!]$
- Ternary constraint network: representation of constraints suited for GPU architectures.
- First general constraint solver fully executing on GPU.
 - \Rightarrow **Open-source**: Publicly available on https://github.com/ptal/turbo.

⁶P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.

Parallel Model of Computation

Example of Parallel Propagation

Let's consider $\mathcal{I}[\![x \le 4 \land x \le 5]\!] = \mathcal{I}[\![x \le 4]\!] \parallel \mathcal{I}[\![x \le 5]\!]$

Memory:

Propagators:

$$x \in [-\infty, \infty]$$
 $x \in [-\infty, 4]$ $(\mathcal{I}[x \le 4])$ $|| x \leftarrow [-\infty, 5]$ $(\mathcal{I}[x \le 5])$

Example of Parallel Propagation

Let's consider $\mathcal{I}[\![x \le 4 \land x \le 5]\!] = \mathcal{I}[\![x \le 4]\!] \parallel \mathcal{I}[\![x \le 5]\!]$

Issue 1: data race? Parallel update of the same variable: upper bound of x.

Example of Parallel Propagation

Let's consider $\mathcal{I}[\![x \le 4 \land x \le 5]\!] = \mathcal{I}[\![x \le 4]\!] \parallel \mathcal{I}[\![x \le 5]\!]$

Issue 1: data race? Parallel update of the same variable: upper bound of x. \Rightarrow **Solution**: Use atomic load and store!

Let's consider $\mathcal{I}[\![x \le 4 \land x \le 5]\!] = \mathcal{I}[\![x \le 4]\!] \parallel \mathcal{I}[\![x \le 5]\!]$

Issue 1: data race? Parallel update of the same variable: upper bound of x.

- \Rightarrow Solution: Use atomic load and store!
- \Rightarrow In CUDA: Integer load and store are atomic by default!

Let's consider $\mathcal{I}[\![x \le 4 \land x \le 5]\!] = \mathcal{I}[\![x \le 4]\!] \parallel \mathcal{I}[\![x \le 5]\!]$

Issue 1: data race? Parallel update of the same variable: upper bound of x.

- \Rightarrow Solution: Use atomic load and store!
- \Rightarrow In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to $[-\infty, 4]$ or $[-\infty, 5]$ depending on the order of execution.

Let's consider $\mathcal{I}[\![x \le 4 \land x \le 5]\!] = \mathcal{I}[\![x \le 4]\!] \parallel \mathcal{I}[\![x \le 5]\!]$

Issue 1: data race? Parallel update of the same variable: upper bound of x.

- \Rightarrow Solution: Use atomic load and store!
- \Rightarrow In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to $[-\infty, 4]$ or $[-\infty, 5]$ depending on the order of execution.

 \Rightarrow **Solution**: fixpoint + fair scheduling + strict updates.

Strict updates: if (v < x.ub) { x.ub = v; }</pre>

GPU Fixpoint Algorithm

```
__device__ void fixpoint(Store& d, Props* props, int n) {
   __shared__ bool has_changed = true;
   // Keep going until no variable domain is modified.
   while(has_changed) {
     __syncthreads(); has_changed = false; __syncthreads();
```

GPU Fixpoint Algorithm

```
__device__ void fixpoint(Store& d, Props* props, int n) {
    __shared__ bool has_changed = true;
    // Keep going until no variable domain is modified.
    while(has_changed) {
        __syncthreads(); has_changed = false; __syncthreads();
        // Execute all propagators (similar to AC1)
        for(int i = threadIdx.x; i < n; i += blockDim.x) {
            has_changed |= props[i].propagate(d) ;
        }
        __syncthreads();
    }
}</pre>
```

Challenges

- Coalesce memory accesses of the propagator representation props[i].
- Avoiding divergence in propagate.

Ternary Constraint Network

Representation of Propagators

• Represented using shared_ptr and variant data structures.

 \Rightarrow Uncoalesced memory accesses.

• Code similar to an interpreter:

switch(term.index()) {
 case IVar:
 case INeg:
 case IAdd:
 case IMul:
 // ...

 \Rightarrow Thread divergence.

We simplify the representation of constraints to ternary constraints of the form:

- x = y <op> z where x,y,z are variables.
- The operators are $\{+, /, *, mod, min, max, \leq, =\}$.

Example

The constraint $x + y \neq 2$ is represented by:

t1 = x + y ZERO = (t1 = TWO) equivalent to false \Leftrightarrow (t1 = 2)

where ZERO and TWO are two variables with constant values.

The ternary form of a propagator holds on 16 bytes:

struct bytecode_type {
 int op;
 int x;
 int y;
 int z;
};

- Uniform representation of propagators in memory \Rightarrow coalesced memory accesses.
- Limited number of operators + sorting \Rightarrow reduced thread divergence.

Drawback of TCN: increase in number of propagators and variables.

Benchmark on the MiniZinc Challenge 2024 (95 instances)

The **median increase** of variables is 4.46x and propagators is 4.85x. The **maximum increase** of variables is 258x and propagators is 607x.

Divergence?

Search on GPU

Benchmarking

On 95 instances of the MiniZinc 2024 competition.

5 instances discarded (yumi-static) due to out of memory error with TCN.

Timeout 20 minutes, CPU 64 cores, GPU H100.

solver	MiniZinc score	# Optimal
Or-Tools 9.9 (64 threads)	312.9	80
Choco 4.10.18 (64 threads)	233.0	43
Choco 4.10.18 (free search)	159.5	32
Or-Tools 9.9 (fixed search)	130.2	36
Choco 4.10.18 (fixed search)	56.6	25
Turbo 1.2.8 (fixed search)	52.3	20

Comparison of the best objective values found.

Conclusion

Conclusion

Turbo

- Simple: solving algorithms from 50 years ago.
 - \Rightarrow no global constraints, nogoods learning, lazy clause generation, restart strategies, event-based propagation, trailing or recomputation-based state restoration and domain consistency.
- Efficient: Almost on-par with Choco (algorithmic optimization VS hardware optimization).

https://github.com/ptal/turbo

Conclusion

Turbo

- Simple: solving algorithms from 50 years ago.
 - \Rightarrow no global constraints, nogoods learning, lazy clause generation, restart strategies, event-based propagation, trailing or recomputation-based state restoration and domain consistency.
- Efficient: Almost on-par with Choco (algorithmic optimization VS hardware optimization).

https://github.com/ptal/turbo

But...

- Still lagging behind CP+SAT solvers, and SAT learning is inherently sequential...
- There is hope: ACE (a pure CP solver) show CP-only is still competitive in XCSP3 compet.