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Why CP on GPU?

CPU clock speed is stagnating, GPU #cores is increasing quickly each year.

Easy speed-up: same code but faster.
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Why CP on GPU?

• Machine learning (deep learning, reinforcement learning, . . . ) has seen tremendous

speed-ups (e.g. 100x, 1000x) by using GPU.

• Some (sequential) optimizations on CPU are made irrelevant if we can explore huge state

space faster.

Can we replicate the success of GPU on machine learning

applications to combinatorial optimization?
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cuOpt: Nvidia Routing Optimization

Cool, but specialized combinatorial algorithm for routing.
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cuOpt: Nvidia Linear Programming Solver

Use a new linear solving algorithm primal-dual hybrid gradient (PDHG/PDPL) (2011, 2021)

which relies on matrix multiplication.

https://developer.nvidia.com/blog/accelerate-large-linear-programming-problems-with-nvidia-cuopt/ 4
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cuOpt: Nvidia Hybrid MIP Solver

34

MIPLIB Benchmarks
Test set of 240 MIPLIB  problems

CPU solvers run on NVIDIA Grace CPU. cuOpt run on H100 GPU

Relaxation on GPU, search on CPU.

https://www.nvidia.com/en-us/on-demand/session/gtc25-s72290/

What about a general constraint solving

framework?

SAT? SMT? CP?

5

https://www.nvidia.com/en-us/on-demand/session/gtc25-s72290/


cuOpt: Nvidia Hybrid MIP Solver

34

MIPLIB Benchmarks
Test set of 240 MIPLIB  problems

CPU solvers run on NVIDIA Grace CPU. cuOpt run on H100 GPU

Relaxation on GPU, search on CPU.

https://www.nvidia.com/en-us/on-demand/session/gtc25-s72290/

What about a general constraint solving

framework?

SAT? SMT? CP?

5

https://www.nvidia.com/en-us/on-demand/session/gtc25-s72290/


Combinatorial Optimization on GPU

Very scarce literature, usually:

• Heuristics: often population-based algorithms1.

• Limited set of problems2

• Limited GPU parallelization: offloading to GPU specialized filtering procedures3,4.

• Limited expressivity: solver with max 256 set variables5.

For CP-based approach: not general and no proof of correctness.
1A. Arbelaez and P. Codognet, A GPU Implementation of Parallel Constraint-Based Local Search, PDP, 2014.
2Jan Gmys. Exactly Solving Hard Permutation Flowshop Scheduling Problems on Peta-Scale GPU-Accelerated

Supercomputers. INFORMS Journal on Computing, 2022.
3F. Campeotto et al., Exploring the use of GPUs in constraint solving, PADL, 2014
4F. Tardivo et al., Constraint propagation on GPU: A case study for the AllDifferent constraint, Journal of

Logic and Computation, 2023.
5A. Dovier et al., CUDA: Set Constraints on GPUs, 2022.
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Our Contributions

Contributions

• Ternary constraint network: representation of constraints suited for GPU architectures.

• Search on GPU: distributing one subproblem per GPU block.

• First general constraint solver fully executing on GPU.

⇒ Open-source: Publicly available on https://github.com/ptal/turbo.

⇒ General: Support MiniZinc and XCSP3 constraint models.

⇒ Efficient?: Almost on-par with Choco (23% better, 28% worst, 49% equal).
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Constraint Programming on GPU

The rest of this talk:

• GPU Architecture.

• Challenges of Constraint Programming on GPU.

• Parallel Model of Computation.

• Ternary Constraint Network.
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Constraint Programming
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Constraint Network

Constraint Network

Let X be a finite set of variables and C be a finite set of constraints.

A constraint network is a pair P = ⟨d ,C ⟩ such that d ∈ X → Itv is the domain of the

variables where Itv is the set of intervals.

Example

⟨{x 7→ [0, 2], y 7→ [2, 3]}, {x ≤ y − 1}⟩

A solution is {x 7→ 0, y 7→ 2}.
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Propagation

Let c be a constraint, then a propagator is a sound and monotone function:

• IJcK ∈ (X → Itv)→ (X → Itv)

• Example: let d = {x 7→ [0, 5], y 7→ [5, 10]}, then IJx = yKd = {x 7→ [5, 5], y 7→ [5, 5]}.

Let ⟨d , {c1, . . . , cn}⟩ be a constraint network, propagation is the computation of the greatest

fixpoint:

gfpd IJc1K ◦ . . . ◦ IJcnK

10



Propagate and Search

The main algorithm behind constraint solvers:

function solve(d , {c1, . . . , cn})
d ← gfpd IJc1K ◦ . . . ◦ IJcnK
if ∀x ∈ X , d(x) = [v , v ] then return {d}
else if ∃x ∈ X , d(x) = ⊥ then return {}
else

⟨d1, . . . , dn⟩ ← split(d)

return
⋃n

i=1 solve(di ,C )

end if

end function

Thanks to the split function, the algorithm is sound and complete.
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GPU Architecture
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(Simplified) Architecture of the GPU Nvidia V100

...

Global memory (32 GB)

L2 Cache (6MB)

SM 1 (128 KB L1 Cache
256 KB registers)

64 cores

8 TPUs

SM 80 (128 KB L1 Cache
256 KB registers)

64 cores

8 TPUs

5120 cores on a single V100 GPU @ 1290MHz

Whitepaper: https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
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Programming Challenges

• Memory coalescence: the way to access the data is important (factor 10).

• Thread divergence: each thread within a warp (group of 32 threads) should execute the

same instructions.

• Memory allocation (dynamic data structures): costly on GPU, everything is generally

pre-allocated.

• Other limitations: small cache, limited number of lines of code, limited STL...
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Example: Find the Minimum in an Array (CPU Style)

Each thread computes its local min (map), then we compute the min of all local min (reduce).

• Map:

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

Thread 0, m0 = 3 Thread 1, m1 = 1 Thread 2, m2 = 3 Thread 3, m3 = 7

• Reduce: min([3, 1, 3, 7]) = 1.

14



Example: Find the Minimum in an Array (CPU Style)

Iteration 1:

• Map:

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

Thread 0, m0 = 3 Thread 1, m1 = 1 Thread 2, m2 = 3 Thread 3, m3 = 7

• Reduce: min([3, 1, 3, 7]) = 1.

14



Example: Find the Minimum in an Array (CPU Style)

Iteration 2:

• Map:

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

Thread 0, m0 = 3 Thread 1, m1 = 1 Thread 2, m2 = 3 Thread 3, m3 = 7

• Reduce: min([3, 1, 3, 7]) = 1.

14



Example: Find the Minimum in an Array (CPU Style)

Iteration 3:

• Map:

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

Thread 0, m0 = 3 Thread 1, m1 = 1 Thread 2, m2 = 3 Thread 3, m3 = 7

• Reduce: min([3, 1, 3, 7]) = 1.

14



Example: Find the Minimum in an Array (CPU Style)

Iteration 4:

• Map:

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

Thread 0, m0 = 3 Thread 1, m1 = 1 Thread 2, m2 = 3 Thread 3, m3 = 7

• Reduce: min([3, 1, 3, 7]) = 1.
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Optimization: Coalesced Memory Accesses

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2

Very important: up to an order of magnitude faster (10x).
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Challenges of Constraint Programming on GPU
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On CPU: Embarrasingly Parallel Search (EPS)6

• Idea: Divide the problem into many subproblems beforehand (e.g. N × 30 with N the number of

threads).

• Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other

subproblems.

Subproblems

Threads pool

...

T1 T2 T3 T2 T1 T1 T3 T2 T2 T1

6A. Malapert et al., ‘Embarrassingly Parallel Search in Constraint Programming’, JAIR, 2016
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On CPU: Embarrasingly Parallel Search (EPS)

• Idea: Divide the problem into many subproblems beforehand (e.g. N × 30 with N the number of

threads).

• Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other

subproblems.

Subproblems

Threads pool

...

T1 T2 T3 T2 T1 T1 T3 T2 T2 T1

⇒ Other approach: In modern solvers (e.g., Choco, OR-Tools), they use a portfolio approach (e.g.,

different split strategy on the same problem).
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On CPU: Embarrasingly Parallel Search (EPS)

• Idea: Divide the problem into many subproblems beforehand (e.g. N × 30 with N the number of

threads).

• Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other

subproblems.

Subproblems

Threads pool

...

T1 T2 T3 T2 T1 T1 T3 T2 T2 T1

On GPU architectures, 1 subproblem per thread is not efficient (limited cache).

⇒ Need to parallelize propagation: gfpd IJc1K ◦ . . . ◦ IJcnK.
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Where is the Challenge?

Parallelizing gfpd IJc1K ◦ . . . ◦ IJcnK is challenging because constraints share variables, and we

have typical shared state memory issues such as data races and inefficiencies.

Solution

• Lock-free parallel model of computation to execute propagators in parallel6:

gfpd IJc1K ∥ . . . ∥ IJcnK
• Ternary constraint network: representation of constraints suited for GPU architectures.

• First general constraint solver fully executing on GPU.

⇒ Open-source: Publicly available on https://github.com/ptal/turbo.

6P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.
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Parallel Model of Computation
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Example of Parallel Propagation

Let’s consider IJx ≤ 4 ∧ x ≤ 5K = IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞,∞]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: fixpoint + fair scheduling + strict updates.

Strict updates: if (v < x.ub) { x.ub = v; }
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GPU Fixpoint Algorithm

__device__ void fixpoint(Store& d, Props* props, int n) {

__shared__ bool has_changed = true;

// Keep going until no variable domain is modified.

while(has_changed) {

__syncthreads(); has_changed = false; __syncthreads();

// Execute all propagators (similar to AC1)

for(int i = threadIdx.x; i < n; i += blockDim.x) {

has_changed |= props[i].propagate(d) ;

}

__syncthreads();

}

}

Challenges

• Coalesce memory accesses of the propagator representation props[i].

• Avoiding divergence in propagate.

19
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Ternary Constraint Network
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Representation of Propagators

• Represented using shared_ptr and variant data

structures.

⇒ Uncoalesced memory accesses.

• Code similar to an interpreter:

switch(term.index()) {

case IVar:

case INeg:

case IAdd:

case IMul:

// ...

⇒ Thread divergence.
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Ternary Normal Form (TNF)

We simplify the representation of constraints to ternary constraints of the form:

• x = y <op> z where x,y,z are variables.

• The operators are {+, /, ∗,mod ,min,max ,≤,=}.

Example

The constraint x + y ̸= 2 is represented by:

t1 = x + y

ZERO = (t1 = TWO) equivalent to false ⇔ (t1 = 2)

where ZERO and TWO are two variables with constant values.
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Bytecode Representation

The ternary form of a propagator holds on 16 bytes:

struct bytecode_type {

int op;

int x;

int y;

int z;

};

• Uniform representation of propagators in memory ⇒ coalesced memory accesses.

• Limited number of operators + sorting ⇒ reduced thread divergence.
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Drawback of TCN: increase in number of propagators and variables.

Benchmark on the MiniZinc Challenge 2024 (95 instances)

The median increase of variables is 4.46x and propagators is 4.85x.

The maximum increase of variables is 258x and propagators is 607x.
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Divergence?
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Search on GPU

24



Benchmarking
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Experimental Evaluation

On 95 instances of the MiniZinc 2024 competition.

5 instances discarded (yumi-static) due to out of memory error with TCN.

Timeout 20 minutes, CPU 64 cores, GPU H100.

solver MiniZinc score #Optimal

Or-Tools 9.9 (64 threads) 312.9 80

Choco 4.10.18 (64 threads) 233.0 43

Choco 4.10.18 (free search) 159.5 32

Or-Tools 9.9 (fixed search) 130.2 36

Choco 4.10.18 (fixed search) 56.6 25

Turbo 1.2.8 (fixed search) 52.3 20
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1-to-1 Comparison

Comparison of the best objective values found.
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Conclusion
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Conclusion

Turbo

• Simple: solving algorithms from 50 years ago.

⇒ no global constraints, nogoods learning, lazy clause generation, restart strategies, event-based

propagation, trailing or recomputation-based state restoration and domain consistency.

• Efficient: Almost on-par with Choco (algorithmic optimization VS hardware optimization).

https://github.com/ptal/turbo

But...

• Still lagging behind CP+SAT solvers, and SAT learning is inherently sequential...

• There is hope: ACE (a pure CP solver) show CP-only is still competitive in XCSP3 compet.

27
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