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Constraint programming

“Holy grail of computing”

I Declarative paradigm for solving combinatorial problems.
I We state the problem and let the computer solve it for us.
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An example of constraint problem

Find a series of 12 notes such that every note and every interval between
two successive notes are distinct.

& 124 n# n n n# n n n n# n# n# n n
8 5 4 6 9 11 10 7 3 1 2

I We only state what constraints the solution should verify.
I We do not say how to find the solution.
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Model of the “All-Interval Series” problem

Find a series of 12 notes such that every note and every interval between
two successive notes are distinct.

& 124 n# n n n# n n n n# n# n# n n
8 5 4 6 9 11 10 7 3 1 2

Model in MiniZinc:
int: n = 12;
array[1..n] of var 1..n: pitches ;
array[1..n−1] of var 1..n − 1: intervals;
constraint forall(i in 1..n − 1)

( intervals [ i ] = abs(pitches [ i+1] − pitches[i ]));
constraint alldifferent ( pitches );
constraint alldifferent ( intervals );

solve satisfy;
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How to find a solution?

NP-complete nature

I Try every combination until we find a solution.
I Backtracking algorithm builds and explores a search tree.

& 124 n

& 124 n n# . . .
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Problem

Holy grail?

I Search tree is often too huge to find a solution in a reasonable time.
I Search strategies are crucial to improve efficiency.
I Search strategies are often problem-dependent so we need to try and

test (empirical evaluation).
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State of the art

1. Languages (Prolog, MiniZinc,...): Clear and compact description but
limited amount of pre-defined strategies or compositionality issues.

2. Libraries (Choco, GeCode,...): Highly customizable and efficient but
complex software, hard to understand and time-consuming.

I Composing strategies is impossible or hard in both cases.

Lack of abstraction for expressing, composing and
extending search strategies.
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Proposal

A language named spacetime programming
Inspired by synchronous programming (Esterel) and timed concurrent
constraint programming (TCC).

Key idea: Logical time to combine concurrency and backtracking.

I Strategy = Process exploring a state space. We compose strategies
as we compose processes.

I Logical time allows us to coordinate the strategies exploring the
search tree.
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Synchronous paradigm

I Invented in the 80’ to deal with reactive system subject to many
(simultaneous) inputs.

I Continuous interaction with the environment.

Dividing the execution into logical instants:
I0

O0
Time

I1 I2 I3 I4

O1 O2 O3 O4
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Synchronous paradigm

Synchronous hypothesis: An instant does not take time:

Logical time

I0

O0

I1 I2 I3 I4

O1 O2 O3 O4

I Strong guarantee of determinism: for one set of inputs, only one
output possible (causality analysis).
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An example in Esterel (Berry et al., 92’)

Emit O as soon as A and B arrived, and count the occurrences of O.
module ABO:

input A, B;
output O := 0: integer ;
loop
[ await A || await B ];
emit O(pre(?O) + 1);
pause;

end loop
end module

(Note that await contains a pause statement).

Logical time

{}

{}

{A} {B} {A,B} {}

{} {O(1)} {}{O(2)}
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Main features of spacetime

I Replace Boolean variables of Esterel with arbitrary lattice variables.
⇒ A constraint problem can be represented as a lattice.

I Model of computation:
I The state space is stored in a queue of nodes.
I A node of the search tree is explored in exactly one logical instant.

I Behavioral semantics of spacetime with guarantees that spacetime
programs are reactive, deterministic and extensive functions.
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Model of computation through an example

Counting the number of right branches (called “discrepancies”) in a tree of
depth 2 at maximum.

single_space LMax n = new LMax(0);
world_line LMax d = new LMax(0);
loop
n ← n + 1;
when depth < 2 then

space nothing end;
space d ← d + 1 end;

end
pause

end

Creating two children nodes.

Counter of nodes.
Counter of discrepancies.

LMax is the lattice of increasing integers.
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single_space LMax n = new LMax(0);
world_line LMax d = new LMax(0);
loop
n ← n + 1;
when depth < 2 then

space nothing end;
space d ← d + 1 end;

end
pause

end

Logical time

Stack with an empty node:
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n=1

{d=0; d=1}

d=1d=0
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single_space LMax n = new LMax(0);
world_line LMax d = new LMax(0);
loop
n ← n + 1;
when depth < 2 then

space nothing end;
space d ← d + 1 end;

end
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d=1 d=2
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Spacetime attributes

We define three spacetime attributes to locate a variable in time and space:

I single_space: variable global to the search tree.
I single_time: variable local to an instant/node.
I world_line: backtrackable variable / local to a path in the search

tree.
1

2 5

3 4

5

2 8

1 4

[0..10]

[0..5] [6..10]

[0..2] [3..5]
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Syntax of spacetime

〈p, q, . . . 〉 ::= Communication fragment
| spacetime Type x = e (variable declaration)
| when x |= y then p else q end (ask)
| f (args) (host function call)
| Synchronous fragment
| par p || q end (disjunctive parallel)
| par p <> q end (conjunctive parallel)
| p ; q (sequence)
| loop p end (loop)
| pause (delay)
| Search fragment
| space p end (create a branch)
| prune (prune a branch)
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Composition of search strategies

Each process generates a sequence of branches that can be combined in
various ways:
I A process without prune or space generates an empty sequence

(identity element).
I prune generates a single pruned branch.
I space p generates a single branch.
I p ; q: concatenation of the branches of p and q.
I p || q: pairwise union of the branches.
I p <> q: pairwise intersection of the branches.

(prune ; space p) <> (space q ; space r)→ 〈prune, space (p<>r)〉
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A recipe to program your search strategy

We create different sub-strategies that we assemble next:
I Create the “raw state space” of a CSP.
I Propagate the nodes in this CSP.
I Bound the depth.
I Assemble!
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Sequential composition

Creating the state space of a constraint satisfaction problem:
class Solver {

world_line VStore domains;
world_line CStore constraints ;
public Solver(VStore domains,
CStore constraints ) {

this .domains = domains;
this . constraints = constraints ;

}

proc base_tree =
loop

single_time IntVar x = inputOrder(domains);
single_time Integer v = middleValue(x);
space constraints <- x.le(v) end;
space constraints <- x.gt(v) end;
pause;

end

Class fields with spacetime attributes

Java constructor

Branching strategy

x ≤ v ∨ x > v
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Propagation
proc propagate =

loop
single_time ES consistency <- read constraints.propagate(readwrite domains);
when consistency |= true then

prune;
end
pause;

end

(ES = false � true � unknown)

par base_tree() <> propagate() end

<> =
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Depth-bounded search

proc bound_depth(limit) =
world_line LMax depth = new LMax(0);
loop

when depth |= limit then
prune;

end
pause;
readwrite depth.inc();

end

Prune the branches when the limit is reached.

par base_tree <> bound_depth(2) end

<> =
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Discrepancy-bound search
proc bound_discrepancy(limit) =

world_line LMax dis = new LMax(0);
loop

space nothing end;
when dis |= limit then

prune
else

space readwrite dis.inc() end
end
pause;

end
}

Left branch

Right branch

par base_tree <> bound_discrepancy(1) end

<> =
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Combining trees by intersection

We can compose depth-bounded and discrepancy-bounded search by
intersection:

par bound_depth(2) <> bound_discrepancy(1) end

<> =
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Combining trees by union

We can compose depth-bounded and discrepancy-bounded search by
union:

par bound_depth(2) || bound_discrepancy(1) end

|| =
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Summary

par
<> base_tree()
<> propagate()
<> par bound_depth(2) || bound_discrepancy(1) end
end

I Communication among strategies through the variables domains
and constraints.

I Compositional and reusable: each strategy is specified
independently.
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Implementation and experiments

I Compiler implemented in Rust and open-source:
github.com/ptal/bonsai.

I The runtime (in Java) is inspired by SugarCubes (Susini, 01’) and
ReactiveML (Mandel et al., 06’).

I Lattice abstraction of the constraint solver Choco.

Problem Spacetime Choco Factor
14-Queens 89.9s (62020n/s) 30.6s (182218n/s) 2.9
15-Queens 528.2s (60972n/s) 185.2s (173816n/s) 2.85

Golomb Ruler 11 40.1s (14186n/s) 27.2s (20888n/s) 1.47
Golomb Ruler 12 425.8s (10871n/s) 279.8s (16541n/s) 1.52
Latin Square 75 61.2s (73n/s) 57.9s (77n/s) 1.06
Latin Square 90 150.3s (44n/s) 147.8s (45n/s) 1.02

(n/s = nodes per second)
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Conclusion

I Spacetime is a language to program and combine search strategies,
combining concurrency and backtracking, inspired by:
I (Timed) concurrent constraint programming (Saraswat et al., 89’)
I Synchronous programming, Esterel (Berry et al., 92’)

I Spacetime programs are reactive, deterministic and extensive.

What’s next
I Merge deep guards of logic programming with time hierarchy of

synchronous programming.
⇒ To program restart-based search strategies / nested search.

I Go beyond the scope of constraint programming.

Thanks! github.com/ptal/bonsai

31

github.com/ptal/bonsai


Conclusion

I Spacetime is a language to program and combine search strategies,
combining concurrency and backtracking, inspired by:
I (Timed) concurrent constraint programming (Saraswat et al., 89’)
I Synchronous programming, Esterel (Berry et al., 92’)

I Spacetime programs are reactive, deterministic and extensive.

What’s next
I Merge deep guards of logic programming with time hierarchy of

synchronous programming.
⇒ To program restart-based search strategies / nested search.

I Go beyond the scope of constraint programming.

Thanks! github.com/ptal/bonsai

31

github.com/ptal/bonsai

	Introduction
	Synchronous programming
	Spacetime programming
	Syntax and model of computation
	Composition of search strategies

	Conclusion

