
Spacetime programming
A Synchronous Language for Composable Search Strategies

Pierre Talbot
(pierre.talbot@univ-nantes.fr)

University of Nantes
LS2N Laboratory

8th October 2019

Constraint programming

“Holy grail of computing”

I Declarative paradigm for solving combinatorial problems.
I We state the problem and let the computer solve it for us.

2

An example of constraint problem

Find a series of 12 notes such that every note and every interval between
two successive notes are distinct.

& 124 n# n n n# n n n n# n# n# n n
8 5 4 6 9 11 10 7 3 1 2

I We only state what constraints the solution should verify.
I We do not say how to find the solution.

3

Model of the “All-Interval Series” problem

Find a series of 12 notes such that every note and every interval between
two successive notes are distinct.

& 124 n# n n n# n n n n# n# n# n n
8 5 4 6 9 11 10 7 3 1 2

Model in MiniZinc:
int: n = 12;
array[1..n] of var 1..n: pitches ;
array[1..n−1] of var 1..n − 1: intervals;
constraint forall(i in 1..n − 1)

(intervals [i] = abs(pitches [i+1] − pitches[i]));
constraint alldifferent (pitches);
constraint alldifferent (intervals);

solve satisfy;
4

How to find a solution?

NP-complete nature

I Try every combination until we find a solution.
I Backtracking algorithm builds and explores a search tree.

& 124 n

& 124 n n# . . .

C C#
B

. . .

C C# D B

5

Problem

Holy grail?

I Search tree is often too huge to find a solution in a reasonable time.
I Search strategies are crucial to improve efficiency.
I Search strategies are often problem-dependent so we need to try and

test (empirical evaluation).

6

State of the art

1. Languages (Prolog, MiniZinc,...): Clear and compact description but
limited amount of pre-defined strategies or compositionality issues.

2. Libraries (Choco, GeCode,...): Highly customizable and efficient but
complex software, hard to understand and time-consuming.

I Composing strategies is impossible or hard in both cases.

Lack of abstraction for expressing, composing and
extending search strategies.

7

Proposal

A language named spacetime programming
Inspired by synchronous programming (Esterel) and timed concurrent
constraint programming (TCC).

Key idea: Logical time to combine concurrency and backtracking.

I Strategy = Process exploring a state space. We compose strategies
as we compose processes.

I Logical time allows us to coordinate the strategies exploring the
search tree.

8

Outline

I Introduction

I Synchronous programming

I Spacetime programming
I Syntax and model of computation
I Composition of search strategies

I Conclusion

9

Synchronous paradigm

I Invented in the 80’ to deal with reactive system subject to many
(simultaneous) inputs.

I Continuous interaction with the environment.

Dividing the execution into logical instants:
I0

O0
Time

I1 I2 I3 I4

O1 O2 O3 O4

10

Synchronous paradigm

Synchronous hypothesis: An instant does not take time:

Logical time

I0

O0

I1 I2 I3 I4

O1 O2 O3 O4

I Strong guarantee of determinism: for one set of inputs, only one
output possible (causality analysis).

11

An example in Esterel (Berry et al., 92’)

Emit O as soon as A and B arrived, and count the occurrences of O.
module ABO:

input A, B;
output O := 0: integer ;
loop
[await A || await B];
emit O(pre(?O) + 1);
pause;

end loop
end module

(Note that await contains a pause statement).

Logical time

{}

{}

{A} {B} {A,B} {}

{} {O(1)} {}{O(2)}

12

Outline

I Introduction

I Synchronous programming

I Spacetime programming
I Syntax and model of computation
I Composition of search strategies

I Conclusion

13

Main features of spacetime

I Replace Boolean variables of Esterel with arbitrary lattice variables.
⇒ A constraint problem can be represented as a lattice.

I Model of computation:
I The state space is stored in a queue of nodes.
I A node of the search tree is explored in exactly one logical instant.

I Behavioral semantics of spacetime with guarantees that spacetime
programs are reactive, deterministic and extensive functions.

14

Model of computation through an example

Counting the number of right branches (called “discrepancies”) in a tree of
depth 2 at maximum.

single_space LMax n = new LMax(0);
world_line LMax d = new LMax(0);
loop
n ← n + 1;
when depth < 2 then

space nothing end;
space d ← d + 1 end;

end
pause

end

Creating two children nodes.

Counter of nodes.
Counter of discrepancies.

LMax is the lattice of increasing integers.

15

single_space LMax n = new LMax(0);
world_line LMax d = new LMax(0);
loop
n ← n + 1;
when depth < 2 then

space nothing end;
space d ← d + 1 end;

end
pause

end

Logical time

Stack with an empty node:

16

single_space LMax n = new LMax(0);
world_line LMax d = new LMax(0);
loop
n ← n + 1;
when depth < 2 then

space nothing end;
space d ← d + 1 end;

end
pause

end

Logical time
n=1

{d=0; d=1}

d=1d=0

16

single_space LMax n = new LMax(0);
world_line LMax d = new LMax(0);
loop
n ← n + 1;
when depth < 2 then

space nothing end;
space d ← d + 1 end;

end
pause

end

Logical time
n=1

{d=0; d=1}

n=1
{d=0}

n=2
{d=0; d=1}

d=1d=1d=0

16

single_space LMax n = new LMax(0);
world_line LMax d = new LMax(0);
loop
n ← n + 1;
when depth < 2 then

space nothing end;
space d ← d + 1 end;

end
pause

end

Logical time
n=1

{d=0; d=1}

n=1
{d=0}

n=2
{d=0; d=1}

n=2
{d=0}

n=3
{}

d=1d=1

16

single_space LMax n = new LMax(0);
world_line LMax d = new LMax(0);
loop
n ← n + 1;
when depth < 2 then

space nothing end;
space d ← d + 1 end;

end
pause

end

Logical time
n=1

{d=0; d=1}

n=1
{d=0}

n=2
{d=0; d=1}

n=2
{d=0}

n=3
{}

n=3
{d=1}

n=4
{}

d=1

16

single_space LMax n = new LMax(0);
world_line LMax d = new LMax(0);
loop
n ← n + 1;
when depth < 2 then

space nothing end;
space d ← d + 1 end;

end
pause

end

Logical time
n=1

{d=0; d=1}

n=1
{d=0}

n=2
{d=0; d=1}

n=2
{d=0}

n=3
{}

n=3
{d=1}

n=4
{}

n=4
{d=1}

n=5
{d=1;d=2}

d=1 d=2

16

Spacetime attributes

We define three spacetime attributes to locate a variable in time and space:

I single_space: variable global to the search tree.
I single_time: variable local to an instant/node.
I world_line: backtrackable variable / local to a path in the search

tree.
1

2 5

3 4

5

2 8

1 4

[0..10]

[0..5] [6..10]

[0..2] [3..5]

17

Syntax of spacetime

〈p, q, . . . 〉 ::= Communication fragment
| spacetime Type x = e (variable declaration)
| when x |= y then p else q end (ask)
| f (args) (host function call)
| Synchronous fragment
| par p || q end (disjunctive parallel)
| par p <> q end (conjunctive parallel)
| p ; q (sequence)
| loop p end (loop)
| pause (delay)
| Search fragment
| space p end (create a branch)
| prune (prune a branch)

18

Outline

I Introduction

I Synchronous programming

I Spacetime programming
I Syntax and model of computation
I Composition of search strategies

I Conclusion

19

Composition of search strategies

Each process generates a sequence of branches that can be combined in
various ways:
I A process without prune or space generates an empty sequence

(identity element).
I prune generates a single pruned branch.
I space p generates a single branch.
I p ; q: concatenation of the branches of p and q.
I p || q: pairwise union of the branches.
I p <> q: pairwise intersection of the branches.

(prune ; space p) <> (space q ; space r)→ 〈prune, space (p<>r)〉

20

A recipe to program your search strategy

We create different sub-strategies that we assemble next:
I Create the “raw state space” of a CSP.
I Propagate the nodes in this CSP.
I Bound the depth.
I Assemble!

21

Sequential composition

Creating the state space of a constraint satisfaction problem:
class Solver {

world_line VStore domains;
world_line CStore constraints ;
public Solver(VStore domains,
CStore constraints) {

this .domains = domains;
this . constraints = constraints ;

}

proc base_tree =
loop

single_time IntVar x = inputOrder(domains);
single_time Integer v = middleValue(x);
space constraints <- x.le(v) end;
space constraints <- x.gt(v) end;
pause;

end

Class fields with spacetime attributes

Java constructor

Branching strategy

x ≤ v ∨ x > v

22

Propagation
proc propagate =

loop
single_time ES consistency <- read constraints.propagate(readwrite domains);
when consistency |= true then

prune;
end
pause;

end

(ES = false � true � unknown)

par base_tree() <> propagate() end

<> =

23

Depth-bounded search

proc bound_depth(limit) =
world_line LMax depth = new LMax(0);
loop

when depth |= limit then
prune;

end
pause;
readwrite depth.inc();

end

Prune the branches when the limit is reached.

par base_tree <> bound_depth(2) end

<> =

24

Discrepancy-bound search
proc bound_discrepancy(limit) =

world_line LMax dis = new LMax(0);
loop

space nothing end;
when dis |= limit then

prune
else

space readwrite dis.inc() end
end
pause;

end
}

Left branch

Right branch

par base_tree <> bound_discrepancy(1) end

<> =

25

Combining trees by intersection

We can compose depth-bounded and discrepancy-bounded search by
intersection:

par bound_depth(2) <> bound_discrepancy(1) end

<> =

26

Combining trees by union

We can compose depth-bounded and discrepancy-bounded search by
union:

par bound_depth(2) || bound_discrepancy(1) end

|| =

27

Summary

par
<> base_tree()
<> propagate()
<> par bound_depth(2) || bound_discrepancy(1) end
end

I Communication among strategies through the variables domains
and constraints.

I Compositional and reusable: each strategy is specified
independently.

28

Outline

I Introduction

I Synchronous programming

I Spacetime programming
I Syntax and model of computation
I Composition of search strategies

I Conclusion

29

Implementation and experiments

I Compiler implemented in Rust and open-source:
github.com/ptal/bonsai.

I The runtime (in Java) is inspired by SugarCubes (Susini, 01’) and
ReactiveML (Mandel et al., 06’).

I Lattice abstraction of the constraint solver Choco.

Problem Spacetime Choco Factor
14-Queens 89.9s (62020n/s) 30.6s (182218n/s) 2.9
15-Queens 528.2s (60972n/s) 185.2s (173816n/s) 2.85

Golomb Ruler 11 40.1s (14186n/s) 27.2s (20888n/s) 1.47
Golomb Ruler 12 425.8s (10871n/s) 279.8s (16541n/s) 1.52
Latin Square 75 61.2s (73n/s) 57.9s (77n/s) 1.06
Latin Square 90 150.3s (44n/s) 147.8s (45n/s) 1.02

(n/s = nodes per second)
30

github.com/ptal/bonsai

Conclusion

I Spacetime is a language to program and combine search strategies,
combining concurrency and backtracking, inspired by:
I (Timed) concurrent constraint programming (Saraswat et al., 89’)
I Synchronous programming, Esterel (Berry et al., 92’)

I Spacetime programs are reactive, deterministic and extensive.

What’s next
I Merge deep guards of logic programming with time hierarchy of

synchronous programming.
⇒ To program restart-based search strategies / nested search.

I Go beyond the scope of constraint programming.

Thanks! github.com/ptal/bonsai

31

github.com/ptal/bonsai

Conclusion

I Spacetime is a language to program and combine search strategies,
combining concurrency and backtracking, inspired by:
I (Timed) concurrent constraint programming (Saraswat et al., 89’)
I Synchronous programming, Esterel (Berry et al., 92’)

I Spacetime programs are reactive, deterministic and extensive.

What’s next
I Merge deep guards of logic programming with time hierarchy of

synchronous programming.
⇒ To program restart-based search strategies / nested search.

I Go beyond the scope of constraint programming.

Thanks! github.com/ptal/bonsai

31

github.com/ptal/bonsai

	Introduction
	Synchronous programming
	Spacetime programming
	Syntax and model of computation
	Composition of search strategies

	Conclusion

