Abstract Interpretation of
Constraint Programming

Seminar GDR Al

Pierre Talbot
16 June 2021

University of Luxembourg
Parallel Computing & Optimisation Group (PCOG)

i

UNIVERSITE DU
LUXEMBOURG

This seminar in a nutshell!

We present the “fusion” of...

Constraint reasoning

BRUTE-FORCE
SOL-UTION:

o(nt)

DYNAMIC
PROGRAMMING
ALGORITHMS:

O (n*2")

SELUNG ON EBAY:
0()

STILL WORKING.
ON YOUR ROUTE?

N\
~
SHUT THE
HEW VR

Abstract interpretation

(and lattice theory)

-
A

that gives us abstract constraint reasoning.

This seminar in a nutshell!

We present the “fusion” of...

Constraint reasoning + Abstract interpretation

~

WHY?

BRUTE-FOI
SOLUTTOl

1 .. .
oln: e A framework for combining constraint solvers.

e Constraint solving on GPUs.

that gives us abstract constraint reasoning.

Abstract constraint reasoning

.
00 [22 @ [3.3]
01 [12 [23]
072 [1.3]

03]

e Data structures = lattices

Abstract constraint reasoning

.
00 [11] 22 [3.3]

01 [12] [23]

072 [1.3]
[0.3]

Data structures = lattices

Algorithms = extensive functions

Example: f(x) = x U [2..00] models the constraint x > 2.

Lattice + Extensive function = Abstract domains

I. A framework for combining constraint solvers

SAT [DHK13]

SMT [ccmi3)

Logic programming [Cou20]

Constraint programming [Pel+13]
Linear programming Abstract domains

Multi-objective optimization

Multilevel programming

I. A framework for combining constraint solvers

SAT [DHK13]
SMT [ccmi3)

Logic programming [Cou20]

Linear programming Abstract domains
Multi-objective optimization

Multilevel programming

Il. Towards a theory for constraint solving on GPUs

070 [22 @ [3.3]

01 [12] [2.3]

072 [1.3]
. W
(03]

e f(x) = xU[2..00] models the constraint x > 2.

e g(x) = xU[—00..2] models the constraint x < 2.

e Concurrent execution: £ || g = [2..2]

A new twist on an old idea: asynchronous iterations of abstract interpretation [Cou77].

. A framework for combining constraint solvers

1. (Traditional) Constraint Programming
2. Abstract Constraint Programming

3. Products of Abstract Domains

4. Soundness and Completeness

Il. Towards a theory for constraint solving on GPUs

I1l. Conclusion

(Traditional) Constraint Programming

An example of constraint problem

«— Task 1

¢— Task 2

«— Task 3

e

UNIVERSITE DU
LUXEMBOURG

«— Task 4

«— Task 5

@@@\\\\\

Constraint problem: Tasks have a duration, use resources
(#CPU/#GPU), and have precedence relations.
Goal: Find a minimal schedule of the tasks on the HPC.

An example of constraint problem

«— Task 1

— Task 2

—— Task 3

UNIVERSITE DU
LUXEMBOURE

«— Task 4

«—— Task b

@@@\\\\\

e Constraint programming: we only specify what should be the
solution using relations on variables (declarative programming).

e But we do not program how to compute the solution.

Scheduling problem RCPSP

NP-complete optimisation problem:

T is a set of tasks, d; € N the duration of task /.

e P are the precedences among tasks: i < j € P if i must terminate

before j starts.
e R is a set of resources where k € R has a capacity ¢x € N.

Each task i uses a quantity r, ; of resources k.

Goal: find a (minimal) planning of tasks T that satisfies precedences in
P without exceeding the capacity of available resources.

Example with 5 tasks and 2 resources

Resources consumption

o capadity |
5
& capadity r»
3
2
1
0
0 1 2 3 4 5) 6 7 8
Time units
Ty Ts
T> n T3

0 1 2 3 4 5 6 7 8
Time units

Constraints model

e Variables : s; € {0..h — 1} is the starting time of task /.

e Constraints :

V(i< j)EP, si+d <s (1)
Vj € [Ln], Vi€ [L.n]\ (),)
b,"j - (S,' < SiAs <si+ d,)
Vj e [1..n], Ik.j +(Z Fi,i * bi,j) < ¢k (3)

ie[l..n\{j}

1. Temporal constraints (eq. 1)

2. Resources constraints (eq. 2 and 3): tasks decomposition of
cumulative.

How does a constraint solver work?

A CSP is a pair (d, C), example:
<{T1 — {172,3,4}, T2 — {2,3,4}}, {Tl > T2, T1 75 4—}>

A solution is {Ty — 2, Tp — 2}.

10

How does a constraint solver work?

e Propagate: Remove inconsistent values from the variables’ domain.

T >T, {Ti—{1,2,3,4}, T, — {2,3,4}}
Ty 75 4 {Tl — {2,3,4}, Ty, — {2,3,4}}
Ti>T, {Ti—{2,3}, Th— {2,3,4}}
Ti#2 {T1—{2,3}, T, — {2,3}}

T >T, {Ti—{2,3}, To— {2,3}}

A constraint ¢ is implemented by a propagator function p. : D — D.

e Search: Divide the problem into (complementary) subproblems
explored using backtracking.

e Subproblem 1: ({71 — {2}, T2 — {2,3}},{T1

e Subproblem 2: ({T: — {3}, T, — {2,3}},{T1

Tz, Th # 4})

>
> To, T1 # 4})

11

Constraint solver: propagate and search

A classic solver in constraint programming:

solve((d, C))
(d’, C) + propagate(({d, C))
if d’ is an assignment then
return {d'}
else if d’ has an empty domain then
return {}
else
(di,...,d,) < branch(d’)
return J;_,solve((d;, C))
end if

OF o N o n B D

.
=

12

Abstract Constraint Programming

Abstract domain for constraint reasoning [Pel+13; Tal+21]

An abstract domain (Abs, <,U, L., [.], refine, split) is a lattice such that:

e Abs is a set of elements representable in a machine.

e < is a partial order.

e Ll performs the join of two elements (“union of information”).
e | is the smallest element (“initial state”).

e v :A— D" is a monotone concretization function.

e [.] : & — Abs is a partial interpretation function turning a constraint into
an element of the abstract domain.

e refine : Abs — Abs is an extensive function, e.g., a < refine(a), refining
an abstract element (“gain information”).

e split : Abs — P(Abs) is an extensive function dividing an abstract
element into a set of sub-elements.

E: Abs x ®: aF ¢ holds whenever v(a) C [¢]’.

13

Box abstract domain [cc77]

e Let / be the lattice of integer intervals, and X a set of variables.
e Then Box = [X —] is the abstract domain of box.

It treats constraints of the form
x<d x>d

where d € Z is a constant.

Example of abstract domain operations:

o [x<d] & {x+ [~c0..d]},
e 0 <7 £ Vx € dom(c), x € dom(7) A o(x) < 7(x) where dom(c)
denotes the domain of o,
o(x)Ur(x) if x € dom(o) N dom(T)
e olUT = Mx.{ o(x) if x € dom(c) \ dom(T)
7(x) if x € dom(7) \ dom(o)

14

Integer octagon [minoe)

An integer octagon is defined over a set of variables (xg, ..., Xx,_1) and
constraints:
+xi —+x;, < d

where d € Z is a constant.

Complexity of the main operations:
e join is O(n?).

e refine: Floyd-Warshall algorithm in O(n®), incremental version in
O(n?) to add a single constraint [CRK18].

e 0 F ¢ is in constant time when ¢ is a single octagonal constraint.

15

Example of integer octagon

Take the following constraints:

X0 >1Axg <3 x1>1Ax3 <4
xo—x1 <1 —xo+x1 <1

Bound constraints on xg and x; are represented by the yellow box, and
octagonal constraints by the green box.

Xy
X
0,1 !

X0
X0

16

Abstract constraint solver

A solver by abstract interpretation, with Abs an abstract domain:

solve(a € Abs)

a < refine(a)

if split(a) = {a} then
return {a}

else if split(a) = {} then
return {}

else
(a1, ...,an) < split(a)
return |J;_,solve(a;)

end if

©OF o NI o 01 B Dl

—
=4

Conservative extension: We encapsulate propagators in an abstract
domain PP.

Many abstract domains: Octagon, Polyhedron, products, ...
17

Products of Abstract Domains

Three kinds of constraints in RCPSP

e In green: octagonal constraints treated by octagon abstract domain.

e In red: equivalence constraints treated in a specialized reduced
product.

e In blue: interval constraints treated by the PP abstract domain.
V(I<<_/)€P, S,‘-l-d,'SSj

Vj e [1.n], Vi e [1..n]\ {j},
bij < (si<spAsp<sj+d;)

Vj e [1../7]7 Ik, +(Z Ik,i % bi,j) < ck
i€[l..n\{j}

Equivalence constraints connect the PP and octagon abstract domains.

18

Direct product: combination of abstract domains

We can define a direct product over PP x Oct as follows:

(pv O) U (p,7 O/) = (P Upp p,7 o Uoct OI)
(Ielpp, [l oct)

[l = (Telpp, Loct) if [¢]oct is not defined
(Lep, [¢]oct) if [¢]pp is not defined
refine((p, 0)) = (refine(p), refine(o))

Issue: domains do not exchange information.

19

Reduced product via equivalence constraints [rai+19]

We can improve the refinement operator of the direct product by
connecting constraints from both domains via equivalence constraints.

e Let @1 < ¢y be an equivalence constraint where 1] pp and
[¢2] oct are defined, then we have:

prope(p, 0,1 < @) £
pEpp 1 = (p,oU [p2]oct)
pFEpp 01 = (p,o U [~w2]oct)
0 Foct p2 = (pU [p1]pp,0)
0 Foct ~p2 = (pU [~¢1]pp,0)
(p, 0) otherwise

e Result: A generic reduced product to combine abstract domains
with disjoint set of variables.

20

Interval propagators completion [tmT20]

Consider the constraint o 2 D; > 1A T, + T, < DA T, — T, < 3.

e D; > 1 can be interpreted in boxes,

e T1 — T, <3 in octagons,

e but T; + T, < Dy is too general for any of these two because it has
3 variables...

e ...and it shares its variables with the other two.

Solution: Use the notion of propagator functions to connect variables

between abstract domains.

21

Interval propagators completion

Abstract domain: Interval propagators completion (IPC)

e Lattice structure: IPC(A) = A x P([A — A]).
e We equip A with a pair of projective functions [t], and [t],

projecting resp. the lower and upper bound of the term t in a € A.

The goal is to use IPC(Box x Octagon) with a propagator for
Ti+ T2 < Dy

[[Tl =+ T2 S Dl]] = \a.a
Ua [T1+ T2 < [t]a]a Send an over-approximation to octagon.
Ua [T+ T2]2 < DiJa Send an over-approximation to box.

Interval propagators completion

[[Tl + T < Dl]] = A\a.a
Ua [T1+ T2 < [t]a]a Send an over-approximation to octagon.
Ua [L 71+ T2)a < DiJa Send an over-approximation to box.

e Let Dy €[1..3], then T; 4+ T, < 3 is sent to the octagon.
o Let T1 + T, € [2..4], then 2 < Dy is sent to the box.

e New over-approximations are sent whenever a bound is updated.

Soundness and Completeness

Abstract constraint reasoning

1 I

v
Al CP

o O is the set of all first-order logical formulas.
e C’ is the concrete domain.

e A?is the abstract domain.

24

Abstract constraint reasoning

X >225Ax <275
I I’

-
Al CP

o x >225Ax <275 ¢ dis a logical formula.

24

Abstract constraint reasoning

x>225Ax <275
I 1k

¥
Af P(R)
o

eg {x eR|x>225Ax <275}

e x>225 A\ x <275 € & is alogical formula.

e {x € R|x >2.25Ax < 275} is the concrete solutions set of this
formula.

24

Abstract constraint reasoning

x> 225 A x < 2.75
Iy I’

~
FxF P(R)
«

eg {x€R|x>225Ax <275}

e |t is not possible to represent all real numbers in a machine.

e We rely on the abstract domain of floating point intervals F x .

24

Abstract constraint reasoning

x>225Ax <275
1 k¢

~
FxF P(R)

«

eg {xeR|x>225Ax <275}

e Tradeoff between completeness and soundness: either all solutions
with extra, or a subset without extra.

e Over-approximation: [x > 2.25 A x < 2.75]% = [2.25..2.75] € F?
(2.25 and 2.75 are not solutions).

e Under-approximation: [x > 2.25 A x < 2.75]]ﬁ = [2.375..2.625] € F?
(2.26 and 2.74 are missing solutions).

24

Concrete domain for constraint reasoning

e Let V be a set of values (universe of discourse) and X a set of

variables.
e We have Asn = [X — V], the set of all assignments of the variables

to values.
e The concrete domain is the following lattice D” = (P(Asn), D).

Using the usual Tarski model-theoretic semantics of first-order logic, we
can interpret a logical formula ¢ in the concrete domain (A is a
structure):

[]°:&— D°

[e]’ = {a € Asn| Ak, ¢}
Example:

[xe{1,2},y e {13}, x>y’ = {{x = 1,y = 1}, {x = 2,y > 1}}

25

Two core properties

Using this formal framework, we establish two important properties of
abstract domains:

Ji €N, (v o refine’ o [.])(¢) C [¢] (under-approximation)
2

Vi e N, (v o refine’ o [.])(¢) 2 [¢]’ (over-approximation)

26

Further theoretical investigations [Tal421] (draft)

When reasoning in this framework, fundamental questions arise:

e Compositionality: given two under-/over-approximating refinement
functions f and g, under what conditions f o g preserves
under-/over-approximations?

e How to define propagation which is an over-approximating
refinement operator which becomes under-approximating on
unsplittable elements.
= Search tree abstract domain.

27

Perspective: Towards automatic creation of the abstract domain

Iy [

Al x AL c’

e How to create an appropriate combination of abstract domains for a
particular formula?

e "“Type inference”: In which abstract domain goes each subformula
pi € 7

28

Towards a theory for constraint
solving on GPUs

Constraint solving on GPUs (Ongoing research project with Frédéric Pinel)

070 [22 @ [3.3]

01 [12] [2.3]

072 [1.3]
. W
(03]

e f(x) = xU[2..00] models the constraint x > 2.

e g(x) = x U[—00..2] models the constraint x < 2.
e Concurrent execution: £ || g = [2..2]

In parallel on shared memory? No problem, because they do not
modify the same memory cell... but what if?
29

Parallel execution of refinement functions

-
070 [22 [3.3]

01 [12] [2.3]

[02] [1.3]
[0.3]

Here, both f and g modify the same memory cell: race condition?

void update_lb(int new_1b) {
if(new_1b > 1b) {
1b = new_lb;
¥
}

Indeed, it is possible that after £ || g, we have [1..3] instead of [2..3]. =0

Parallel execution without synchronization and atomics

Key idea: With lattice data structure and fixpoint of
refinement, our model is tolerant to race conditions.

e Key idea: we execute £ || g until we reach a fixpoint.
e Assume a race condition, then £ || g = [1..3].
e But £ || gis not at a fixed point, so it is reexecuted.

e The second time, £ || g = [2..3], because g is at a local fixpoint
and cannot write in 1b anymore.

31

Turbo: a pure GPU constraint solver

We have experimented this idea with Turbo!, a constraint solver with
both propagation and search on the GPU.

e Almost no synchronization (2 __syncthreads, mostly due to the
opaque scheduling strategy of NVIDIA GPU).
e No atomic statement (actually, just one for the optimisation bound

but avoidable!).

Still many optimisations to make, currently around one order of
magnitude faster than GeCode on simple scheduling problem.

Ihttps://github.com/ptal/turbo/

32

https://github.com/ptal/turbo/

An architecture for constraint solving on GPU

-
(Global memory (40 GB))

SM 108 (196 KB L1 Cache)

SM 1 (196 KB L1 Cache)

64 cores

64 cores

[
[
[
!

[

[

:

(L2 Cache (40 MB))
L

e OR-parallelism across SM.
e AND-parallelism inside each SM.

e Enable the usage of cache L1 for fast memory access.

33]

Conclusion

Conclusion

e Abstract interpretation a “grand unification theory” among the
fields of constraint reasoning?

e Not there yet, but interesting theory and promising results!
T
00 [22 [3.3

01 2] [23]

34

References

[CCT7] Patrick Cousot and Radhia Cousot. “Abstract interpretation: a
unified lattice model for static analysis of programs by construction
or approximation of fixpoints”. In: POPL 77'. ACM, 1977,
pp. 238-252. DoI: 10.1145/512950.512973.

[CCM13] Patrick Cousot, Radhia Cousot, and Laurent Mauborgne.
“Theories, Solvers and Static Analysis by Abstract Interpretation”.
In: J. ACM 59.6 (Jan. 2013). poI: 10.1145/2395116.2395120.

[Cou20] Patrick Cousot. “The Symbolic Term Abstract Domain”. In: TASE
(Dec. 2020). URL:
https://sei.ecnu.edu.cn/tase2020/file/video-slides-
PCousot-TASE-2020.pdf.

35

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/2395116.2395120
https://sei.ecnu.edu.cn/tase2020/file/video-slides-PCousot-TASE-2020.pdf
https://sei.ecnu.edu.cn/tase2020/file/video-slides-PCousot-TASE-2020.pdf

[Cou77]

[CRK18]

[DHK13]

[Min06]

[Pel+13]

Patrick Cousot. Asynchronous iterative methods for solving a fixed
point system of monotone equations in a complete lattice.
Research Report 88. Grenoble, France: Laboratoire IMAG,
Université scientifique et médicale de Grenoble, Sept. 1977, p. 15.

Aziem Chawdhary, Ed Robbins, and Andy King. “Incrementally
closing octagons”. In: Formal Methods in System Design (Jan.
2018). por: 10.1007/s10703-017-0314-7.

Vijay D’Silva, Leopold Haller, and Daniel Kroening. “Abstract
Conflict Driven Learning”. In: POPL '13. ACM, 2013,
pp. 143-154. por: 10.1145/2429069.2429087.

A. Miné. “The octagon abstract domain”. In: Higher-Order and
Symbolic Computation (HOSC) 19.1 (2006), pp. 31-100. pDOL:
10.1007/s10990-006-8609-1.

Marie Pelleau et al. “A constraint solver based on abstract
domains”. In: VMCAI 13’. Springer, 2013, pp. 434-454. DOLI:
10.1007/978-3-642-35873-9_26.

36

https://doi.org/10.1007/s10703-017-0314-7
https://doi.org/10.1145/2429069.2429087
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/978-3-642-35873-9_26

[Tal+19]

[Tal+21]

[TMT20]

Pierre Talbot et al. “Combining Constraint Languages via Abstract
Interpretation”. In: 31st IEEE International Conference on Tools
with Artificial Intelligence (ICTAI 2019). 2019, pp. 50-58. DOI:
10.1109/ICTAI.2019.00016.

Pierre Talbot et al. “Abstract Constraint Programming”. In:
(2021). draft. URL: http://hyc.io/papers/abstract-cp.pdf.

Pierre Talbot, Eric Monfroy, and Charlotte Truchet. “Modular
Constraint Solver Cooperation via Abstract Interpretation”. In:
Theory and Practice of Logic Programming 20.6 (2020),

pp. 848-863. DOI: 10.1017/51471068420000162.

37

https://doi.org/10.1109/ICTAI.2019.00016
http://hyc.io/papers/abstract-cp.pdf
https://doi.org/10.1017/S1471068420000162

	A framework for combining constraint solvers
	(Traditional) Constraint Programming
	Abstract Constraint Programming
	Products of Abstract Domains
	Soundness and Completeness

	Towards a theory for constraint solving on GPUs
	Conclusion
	References

