
Turbo: Design of a Constraint Programming Solver on GPU

Pierre Talbot

pierre.talbot@uni.lu

8th April 2025

University of Luxembourg

Constraint Programming

• Declarative paradigm: specify your problem and let the computer solves it for you.

• Many applications: scheduling, bin-packing, hardware design, satellite imaging, . . .

• Constraint programming is one approach to solve such combinatorial problems.

• Other approaches include SAT, linear programming, SMT, MILP, ASP,...

1

5

Satellite image mosaic

State of the art

After a query with certain parameters:

N = 30 satellite images

Find the cover with the minimum number
of images (NP-Hard)

Build the mosaic

1

1Combarro et al., Constraint Model for the Satellite Image Mosaic Selection Problem, CP 2023

2

Why CP on GPU?

CPU clock speed is stagnating, GPU #cores is increasing quickly each year.

Easy speed-up: same code but faster.

3

Why CP on GPU?

CPU clock speed is stagnating, GPU #cores is increasing quickly each year.

Easy speed-up: same code but faster.

“The biggest lesson that can be read from 70 years of AI research is that

general methods that leverage computation are ultimately the most

effective, and by a large margin.”a

aThe Bitter Lesson, Rich Sutton, 2019,

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

3

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Why CP on GPU?

• Machine learning (deep learning, reinforcement learning, . . .) has seen tremendous

speed-ups (e.g. 100x, 1000x) by using GPU.

• Some (sequential) optimizations on CPU are made irrelevant if we can explore huge state

space faster.

Can we replicate the success of GPU on machine learning

applications to combinatorial optimization?

4

cuOpt: Nvidia Routing Optimization

Cool, but specialized combinatorial algorithm for routing.

5

cuOpt: Nvidia Linear Programming Solver

Better! But only for linear constraints over continuous domain.

What about a general constraint solving

framework?

SAT? SMT? CP?

6

cuOpt: Nvidia Linear Programming Solver

Better! But only for linear constraints over continuous domain.

What about a general constraint solving

framework?

SAT? SMT? CP?

6

Combinatorial Optimization on GPU

Very scarce literature, usually:

• Heuristics: often population-based algorithms2.

• Limited set of problems3

• Limited GPU parallelization: offloading to GPU specialized filtering procedures4,5.

• Limited expressivity: solver with max 256 set variables6.

For CP-based approach: not general and no proof of correctness.
2A. Arbelaez and P. Codognet, A GPU Implementation of Parallel Constraint-Based Local Search, PDP, 2014.
3Jan Gmys. Exactly Solving Hard Permutation Flowshop Scheduling Problems on Peta-Scale GPU-Accelerated

Supercomputers. INFORMS Journal on Computing, 2022.
4F. Campeotto et al., Exploring the use of GPUs in constraint solving, PADL, 2014
5F. Tardivo et al., Constraint propagation on GPU: A case study for the AllDifferent constraint, Journal of

Logic and Computation, 2023.
6A. Dovier et al., CUDA: Set Constraints on GPUs, 2022.

7

Where is the Challenge?

A constraint solver on GPU is difficult because:

• Embarassingly parallel (one subproblem per thread) is not efficient on GPU due to limited

cache per thread.

• Constraints share variables ⇒ shared-memory parallelism ⇒ synchronization and efficiency

issues.

8

Our Contributions

Theoretical Foundation

We propose a new parallel model of computation:

• Correct: formal proofs of correctness w.r.t. the parallel load/store operations on memory7.

• Simple and lock-free: no mutex, no complicated atomic primitives, just barriers.

• Expressive: a process algebra based on concurrent constraint programming which supports

Z,R,P(Z), . . . domains.

Turbo: First general constraint solver fully executing on GPU.

• General: Support MiniZinc and XCSP3 constraint models (currently only Z variables).

• Simple: Solving algorithm from 50 years ago.

• Efficient?: Almost on-par with Choco (23% better, 28% worst, 49% equal).

• Open-source: Publicly available on https://github.com/ptal/turbo .

7P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.
9

https://github.com/ptal/turbo

Our Contributions

Theoretical Foundation

We propose a new parallel model of computation:

• Correct: formal proofs of correctness w.r.t. the parallel load/store operations on memory7.

• Simple and lock-free: no mutex, no complicated atomic primitives, just barriers.

• Expressive: a process algebra based on concurrent constraint programming which supports

Z,R,P(Z), . . . domains.

Turbo: First general constraint solver fully executing on GPU.

• General: Support MiniZinc and XCSP3 constraint models (currently only Z variables).

• Simple: Solving algorithm from 50 years ago.

• Efficient?: Almost on-par with Choco (23% better, 28% worst, 49% equal).

• Open-source: Publicly available on https://github.com/ptal/turbo .

7P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.
9

https://github.com/ptal/turbo

What is in This Presentation?

On the menu:

1. Constraint Programming (CP)

2. Towards a correct GPU constraint solver.

3. Towards an efficient GPU constraint solver.

10

Constraint Programming

10

Constraint Network

Constraint Network

Let X be a finite set of variables and C be a finite set of constraints. A constraint network is

a pair P = ⟨d ,C ⟩ such that d ∈ X → Itv is the domain of the variables where Itv is the set

of intervals.

Example

⟨{x 7→ [0, 2], y 7→ [2, 3]}, {x ≤ y − 1}⟩

A solution is {x 7→ 0, y 7→ 2}.

11

Propagator Function

Interval Propagator

An interval propagator is a function pc : D→ D where c ∈ C is a constraint and D the set of

all functions X → Itv . Let d ∈ D, then a propagator is reductive (pc(d) ≤ d), monotone

(d ≤ d ′ ⇒ pc(d) ≤ pc(d
′)) and sound (does not remove solutions).

Example

The propagator for an equality constraint is:

px=y (d) ≜ d [x 7→ d(x) ∩ d(y), y 7→ d(x) ∩ d(y)]

Suppose d = {x 7→ [1, 2], y 7→ [0, 5]}, then px=y (d) = {x 7→ [1, 2], y 7→ [1, 2]}.

12

Propagate and Search

function solve(d , {c1, . . . , cn})
d ← gfpd pc1 ◦ . . . ◦ pcn
if ∀x ∈ X , d(x) = [v , v] then return {d}
else if ∃x ∈ X , d(x) = ∅ then return {}
else

⟨d1, . . . , dn⟩ ← split(d)

return
⋃n

i=0 solve(di ,C)

end if

end function

13

Embarrasingly Parallel Search (EPS)8

• Idea: Divide the problem into many subproblems beforehand (e.g. N × 30 with N the number of

threads).

• Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other

subproblems.

Subproblems

Threads pool

...

T1 T2 T3 T2 T1 T1 T3 T2 T2 T1

8A. Malapert et al., ‘Embarrassingly Parallel Search in Constraint Programming’, JAIR, 2016

14

Embarrasingly Parallel Search (EPS)

• Idea: Divide the problem into many subproblems beforehand (e.g. N × 30 with N the number of

threads).

• Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other

subproblems.

Subproblems

Threads pool

...

T1 T2 T3 T2 T1 T1 T3 T2 T2 T1

⇒ Other approach: In modern solvers (e.g., Choco, OR-Tools), they use a portfolio approach (e.g.,

different split strategy on the same problem).

14

Embarrasingly Parallel Search (EPS)

• Idea: Divide the problem into many subproblems beforehand (e.g. N × 30 with N the number of

threads).

• Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other

subproblems.

Subproblems

Threads pool

...

T1 T2 T3 T2 T1 T1 T3 T2 T2 T1

On GPU architectures, 1 subproblem per thread is not efficient (limited cache).

⇒ Need to parallelize propagation: gfp pc1 ◦ . . . ◦ pcn .

14

Towards a Correct GPU Constraint Solver

14

Concurrent Constraint Programming (CCP)

Concurrent constraint programming (CCP) is a process calculus introduced in the eighties8.

Processes interact by asking and telling constraints into a shared grow-only constraint store.

⟨Program⟩ ::= (t(x1, . . . , xn) :- P)+ (process definition)

⟨P, Q, . . . ⟩ ::= when c then P ask operator

| tell c tell operator

| P ∥ Q parallel statement

| ∃x , P hiding operator

| t(x1, . . . , xn) call

8V. A. Saraswat and M. Rinard, Concurrent constraint programming (POPL-89)

15

Concurrent Constraint Programming (CCP)

Concurrent constraint programming (CCP) is a process calculus introduced in the eighties8.

Processes interact by asking and telling constraints into a shared grow-only constraint store.

⟨Program⟩ ::= (t(x1, . . . , xn) :- P)+ (process definition)

⟨P, Q, . . . ⟩ ::= when c then P ask operator

| tell c tell operator

| P ∥ Q parallel statement

| ∃x , P hiding operator

| t(x1, . . . , xn) call

Example

∃x , y , (when x ̸= 0 then tell(y < x)) ∥ tell(x > 100)

A process can work with partial information: we do not need to know the exact value of x .

8V. A. Saraswat and M. Rinard, Concurrent constraint programming (POPL-89)

15

Concurrent Constraint Programming (CCP)

Concurrent constraint programming (CCP) is a process calculus introduced in the eighties8.

Processes interact by asking and telling constraints into a shared grow-only constraint store.

⟨Program⟩ ::= (t(x1, . . . , xn) :- P)+ (process definition)

⟨P, Q, . . . ⟩ ::= when c then P ask operator

| tell c tell operator

| P ∥ Q parallel statement

| ∃x , P hiding operator

| t(x1, . . . , xn) call

Clean theoretical framework: every program is a closure operator, unique fixpoint.

Can we rely on CCP to implement gfp pc1 ∥ . . . ∥ pcn?

8V. A. Saraswat and M. Rinard, Concurrent constraint programming (POPL-89)

15

Challenges of CCP

• Concurrent but not parallel: lack connection with parallel hardware.

• Rely on the (abstract) notion of constraint system: good for mathematics, but not for

implementation.

⇒ e.g. ask can be an intractable operation depending on the constraint system.

• Unbounded number of variables: parallelism + garbage collection is difficult to achieve

efficiently.

16

Parallel Concurrent Constraint Programming (PCCP)

We propose a variant of CCP suited for parallel execution on GPU.9

• Parallel: a process = a thread.

• Correct: equivalence between denotational and (parallel) operational semantics.

• Lattice type: each variable has an explicit domain, instead of being a logical entity.

• No recursion: finite number of variables (known at compile-time).

• Lock-free: processes are executed without locks, even if they share variables.

9P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU (AAAI 2022)

17

Syntax of Parallel Concurrent Constraint Programming (PCCP)

Syntax of PCCP

Let x , y , y1, . . . , yn ∈ Vars be variables, L a lattice, f a monotone function, and b a Boolean

variable of type ⟨{true, false},⇐⟩:

⟨P, Q⟩ ::= if b then P ask statement

| x ← f (y1, ..., yn) tell statement

| ∃x :L, P local statement

| P ∥ Q parallel composition

18

From Constraints to PCCP Programs

Let’s x , y be variables, k ∈ Z a constant and Itv the interval lattice.

We define a function JφK compiling a logical formula φ into a PCCP program.

• Constraint Jx + k ≤ yK ≜ x ← fx(k, x , y) ∥ y ← fy (k, x , y) with

fx(k, [xℓ, xu], [yℓ, yu]) ≜ [−∞, yu − k]

fy (k, [xℓ, xu], [yℓ, yu]) ≜ [xℓ + k ,∞]

• Existential J∃x , φK ≜ ∃x : Itv , JφK
• Conjunction Jc1 ∧ c2K ≜ Jc1K ∥ Jc2K
• Equivalence:

Jφ⇔ ψK ≜

if entailed(φ) then JψK
∥ if entailed(ψ) then JφK
∥ if entailed(¬φ) then J¬ψK
∥ if entailed(¬ψ) then J¬φK

with entailed(x + k ≤ y) ≜ ⌈x⌉+ k ≤ ⌊y⌋

19

From Constraints to PCCP Programs

Let’s x , y be variables, k ∈ Z a constant and Itv the interval lattice.

We define a function JφK compiling a logical formula φ into a PCCP program.

• Constraint Jx + k ≤ yK ≜ x ← fx(k, x , y) ∥ y ← fy (k, x , y) with

fx(k, [xℓ, xu], [yℓ, yu]) ≜ [−∞, yu − k]

fy (k, [xℓ, xu], [yℓ, yu]) ≜ [xℓ + k ,∞]

• Existential J∃x , φK ≜ ∃x : Itv , JφK
• Conjunction Jc1 ∧ c2K ≜ Jc1K ∥ Jc2K
• Equivalence:

Jφ⇔ ψK ≜

if entailed(φ) then JψK
∥ if entailed(ψ) then JφK
∥ if entailed(¬φ) then J¬ψK
∥ if entailed(¬ψ) then J¬φK

with entailed(x + k ≤ y) ≜ ⌈x⌉+ k ≤ ⌊y⌋ 19

Example of Parallel Propagation

Let’s consider J∃x : Itv , ∃y : Itv , x + 3 ≤ y ∧ x + 6 ≤ zK

Memory:

x = [1.. 7]

y = [1..10]

z = [1..10]

Propagators:

x ← [−∞, yu − 3]

|| y ← [xℓ + 3,∞]

|| x ← [−∞, zu − 6]

|| z ← [xℓ + 6,∞]

Issue 1: data race? Parallel update of the same integer xu.

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? xu can be equal to 4 or 7 depending on the order of execution.

20

Example of Parallel Propagation

Let’s consider J∃x : Itv , ∃y : Itv , x + 3 ≤ y ∧ x + 6 ≤ zK

Memory:

x = [1.. 7]

y = [1..10]

z = [1..10]

Propagators:

x ← [−∞, yu − 3]

|| y ← [xℓ + 3,∞]

|| x ← [−∞, zu − 6]

|| z ← [xℓ + 6,∞]

Issue 1: data race? Parallel update of the same integer xu.

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? xu can be equal to 4 or 7 depending on the order of execution.

20

Example of Parallel Propagation

Let’s consider J∃x : Itv , ∃y : Itv , x + 3 ≤ y ∧ x + 6 ≤ zK

Memory:

x = [1.. 7]

y = [1..10]

z = [1..10]

Propagators:

x ← [−∞, yu − 3]

|| y ← [xℓ + 3,∞]

|| x ← [−∞, zu − 6]

|| z ← [xℓ + 6,∞]

Issue 1: data race? Parallel update of the same integer xu.

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? xu can be equal to 4 or 7 depending on the order of execution.

20

Example of Parallel Propagation

Let’s consider J∃x : Itv , ∃y : Itv , x + 3 ≤ y ∧ x + 6 ≤ zK

Memory:

x = [1.. 7]

y = [1..10]

z = [1..10]

Propagators:

x ← [−∞, yu − 3]

|| y ← [xℓ + 3,∞]

|| x ← [−∞, zu − 6]

|| z ← [xℓ + 6,∞]

Issue 1: data race? Parallel update of the same integer xu.

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? xu can be equal to 4 or 7 depending on the order of execution.

20

Example of Parallel Propagation

Let’s consider J∃x : Itv , ∃y : Itv , x + 3 ≤ y ∧ x + 6 ≤ zK

Memory:

x = [1.. 7]

y = [1..10]

z = [1..10]

Propagators:

x ← [−∞, yu − 3]

|| y ← [xℓ + 3,∞]

|| x ← [−∞, zu − 6]

|| z ← [xℓ + 6,∞]

Issue 1: data race? Parallel update of the same integer xu.

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? xu can be equal to 4 or 7 depending on the order of execution.

20

Solution: Use a fixpoint loop

While something is changing we reexecute all the propagators!

Memory:

x = [1.. 4]

y = [1..10]

z = [1..10]

Propagators:

fp (

x ← [−∞, yu − 3]

|| y ← [xℓ + 3,∞]

|| x ← [−∞, zu − 6]

|| z ← [xℓ + 6,∞])

Need to add a condition for progress!

We write in the memory only if the value is

strictly lower.

x ← v iff v < x

21

Solution: Use a fixpoint loop

While something is changing we reexecute all the propagators!

Memory:

x = [1.. 4]

y = [1..10]

z = [1..10]

Propagators:

fp (

x ← [−∞, yu − 3]

|| y ← [xℓ + 3,∞]

|| x ← [−∞, zu − 6]

|| z ← [xℓ + 6,∞])

Need to add a condition for progress!

We write in the memory only if the value is

strictly lower.

x ← v iff v < x

21

Denotational Semantics

• A PCCP process is a reductive and monotone function over a Cartesian product

Store = L1 × . . .× Ln storing the values of all local variables.

• Since we do not have recursion, we know at compile-time the number of variables.

• Let Proc be the set of all PCCP processes.

Denotational Semantics

We define a function D : Proc → (Store → Store):

D(x ← f (y1, .., yn)) ≜ λs.s[x 7→ s(x) ⊓ f (s(y1), .., s(yn))]

D(if b then P) ≜ λs.L s(b) D(P)(s) s M
D(P ∥ Q) ≜ D(P) ⊓ D(Q)

Executing the program: gfp D(P).

22

Denotational Semantics

• A PCCP process is a reductive and monotone function over a Cartesian product

Store = L1 × . . .× Ln storing the values of all local variables.

• Since we do not have recursion, we know at compile-time the number of variables.

• Let Proc be the set of all PCCP processes.

Denotational Semantics

We define a function D : Proc → (Store → Store):

D(x ← f (y1, .., yn)) ≜ λs.s[x 7→ s(x) ⊓ f (s(y1), .., s(yn))]

D(if b then P) ≜ λs.L s(b) D(P)(s) s M
D(P ∥ Q) ≜ D(P) ⊓ D(Q)

Executing the program: gfp D(P).

22

Sequential Computation = Parallel Computation

We obtain the same result if we execute P in parallel or if we replace all parallel ∥ by a

sequential operator ; (a transformation we write seq P) defined as follows:

D(P ; Q) ≜ D(Q) ◦ D(P)

Let fix f be the set of fixpoints of a function f .

Theorem (Equivalence Between Sequential and Parallel Operators)

fix D(seq P) = fix D(P)

23

Did We Cheat Using Math?...

OK Ok, we use a “parallel operator”, but it is not really executed in parallel on a machine?

Also: D(P ∥ Q) ≜ D(P) ⊓ D(Q), by unfolding this mathematics definition we have:

D(P ∥ Q)(S) = (D(P) ⊓ D(Q))(S)

= D(P)(S) ⊓ D(Q)(S)

What’s the problem?

We have copied the store!!

Not very “Von Neumann Architecture”-friendly.

24

Did We Cheat Using Math?...

OK Ok, we use a “parallel operator”, but it is not really executed in parallel on a machine?

Also: D(P ∥ Q) ≜ D(P) ⊓ D(Q), by unfolding this mathematics definition we have:

D(P ∥ Q)(S) = (D(P) ⊓ D(Q))(S)

= D(P)(S) ⊓ D(Q)(S)

What’s the problem?

We have copied the store!!

Not very “Von Neumann Architecture”-friendly.

24

Load/Store Operational Semantics

Contribution: An operational semantics based on atomic load and store in memory shown

equivalent to the denotational semantics under the following assumptions:

(ATOM) Load and store instructions must be atomic.

(EC) The caches must eventually become coherent.

(OTA) Values cannot appear out-of-thin-air.

25

Towards an Efficient GPU Constraint Solver

25

GPU Architecture

25

(Simplified) Architecture of the GPU Nvidia V100

...

Global memory (32 GB)

L2 Cache (6MB)

SM 1 (128 KB L1 Cache
256 KB registers)

64 cores

8 TPUs

SM 80 (128 KB L1 Cache
256 KB registers)

64 cores

8 TPUs

5120 cores on a single V100 GPU @ 1290MHz

Whitepaper: https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

26

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Programming Challenges

• Memory coalescence: the way to access the data is important (factor 10).

• Thread divergence: each thread within a warp (group of 32 threads) should execute the

same instructions.

• Memory allocation (dynamic data structures): costly on GPU, everything is generally

pre-allocated.

• Other limitations: small cache, limited number of lines of code, limited STL...

27

Example: Find the Minimum in an Array (CPU Style)

Each thread computes its local min (map), then we compute the min of all local min (reduce).

• Map:

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

Thread 0, m0 = 3 Thread 1, m1 = 1 Thread 2, m2 = 3 Thread 3, m3 = 7

• Reduce: min([3, 1, 3, 7]) = 1.

28

Example: Find the Minimum in an Array (CPU Style)

Iteration 1:

• Map:

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

Thread 0, m0 = 3 Thread 1, m1 = 1 Thread 2, m2 = 3 Thread 3, m3 = 7

• Reduce: min([3, 1, 3, 7]) = 1.

28

Example: Find the Minimum in an Array (CPU Style)

Iteration 2:

• Map:

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

Thread 0, m0 = 3 Thread 1, m1 = 1 Thread 2, m2 = 3 Thread 3, m3 = 7

• Reduce: min([3, 1, 3, 7]) = 1.

28

Example: Find the Minimum in an Array (CPU Style)

Iteration 3:

• Map:

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

Thread 0, m0 = 3 Thread 1, m1 = 1 Thread 2, m2 = 3 Thread 3, m3 = 7

• Reduce: min([3, 1, 3, 7]) = 1.

28

Example: Find the Minimum in an Array (CPU Style)

Iteration 4:

• Map:

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

Thread 0, m0 = 3 Thread 1, m1 = 1 Thread 2, m2 = 3 Thread 3, m3 = 7

• Reduce: min([3, 1, 3, 7]) = 1.

28

Optimization: Coalesced Memory Accesses

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2

Very important: up to an order of magnitude faster (10x).

29

Optimization: Coalesced Memory Accesses

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2

Very important: up to an order of magnitude faster (10x).

29

Optimization: Coalesced Memory Accesses

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2

Very important: up to an order of magnitude faster (10x).

29

Optimization: Coalesced Memory Accesses

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2

Very important: up to an order of magnitude faster (10x).

29

Towards an Efficient GPU Constraint Solver

29

Representation of Propagators

• Represented using shared_ptr and variant data

structures.

⇒ Uncoalesced memory accesses.

• Code similar to an interpreter:

switch(term.index()) {

case IVar:

case INeg:

case IAdd:

case IMul:

// ...

⇒ Thread divergence.

30

Ternary Normal Form (TNF)

We simplify the representation of constraints to ternary constraints of the form:

• x = y <op> z where x,y,z are variables.

• The operators are {+, /, ∗,mod ,min,max ,≤,=}.

Example

The constraint x + y ̸= 2 is represented by:

t1 = x + y

ZERO = (t1 = TWO)

where ZERO and TWO are two variables with constant values.

31

Bytecode Representation

The ternary form of a propagator holds on 16 bytes:

struct bytecode_type {

int op;

int x;

int y;

int z;

};

• Uniform representation of propagators in memory ⇒ coalesced memory accesses.

• Limited number of operators + sorting ⇒ reduced thread divergence.

32

Drawback of TNF: increase in number of propagators and variables.

Benchmark on the MiniZinc Challenge 2024 (89 instances)

100 101 102

Variables (log scale)

100

101

102

103

Co
ns

tra
in

ts
 (l

og
 sc

al
e)

MiniZinc instances

The median increase of variables is 4.76x and propagators is 4.33x.
33

Bytecode-based VS Tree-based

Bytecode-based Bytecode-based Tree-based

+ preprocessing

Nodes per second 103,036 79,884 14,623

FP iterations per second 1,429,274 1,379,686 88,944

FP iterations per node 13.9 17.3 6.1

Propagators mem. (MB) 0.69 0.91 10.33

Variables mem. (KB) 286.5 397.3 76.6

Analysis of the efficiency of the (preprocessed) bytecode representation of TNF and tree-based

representation of arbitrary constraints. The mean is used to aggregate the results. FP stands

for fixpoint.

34

Divergence?

x
=

y
+

z

x
=

m
ax

(y
,z

)

x
=

(y
=

z)

x
=

y
z

x
=

m
in

(y
,z

)

x
=

y
*z

0=
(y

=
z)

Operators

accap

aircraft-disassembly

cable-tree-wiring

community-detection

compression

concert-hall-cap

fox-geese-corn

graph-clear

hoist-benchmark

monitor-placement-1id

neighbours

network_50_cstr

peacable_queens

portal

tiny-cvrp

train-scheduling

triangular

word-equations

Normalized Operator Usage Across Instances

0

20

40

60

80

100

The problems use few operators: limited divergence.

35

Benchmarks: Turbo vs Choco v4.18

Comparison of the best objective values found (timeout: 20 mins, GPU: H100).

36

What’s Next?

36

In-Progress: Parallel Consistency Algorithm

Static Scheduling

Find a better ordering of the propagators or fixpoint scheme to reach the greatest fixpoint

faster (now, the average is 14 iterations before reaching the fixpoint).

Dynamic Scheduling

• Goal: Avoid executing all propagators in each iteration of the fixpoint loop.

• Constraint network as a sparse graph.

• Waking up propagators using GPU-based algorithms (SpMV and scan).

37

In-Progress: Extension Constraint

• Instead of representing the constraints implicitly, we can list all their solutions in a “table”:

(x ≥ 4 ∧ y > 1 ∧ z < 3)

∨(x = 1 ∧ y = 2 ∧ z = 3)

∨(x > 1 ∧ y > 1 ∧ z > 3)

• This representation is useful but has a large and inefficient TNF decomposition.

• ⇒ Directly support extension constraints in Turbo.

38

Beyond Constraint Reasoning

• Investigate if PCCP (or an extension) can be used for general parallel programming:

⇒ finding minimum/maximum in an array, union-find, Floyd-Warshall, ...

• As Turbo is based on lattice theory and abstract interpretation, investigate its applicability

to abstract interpretation and verification of neural network.

39

Conclusion

39

C++ Abstraction: Lattice Land Project

lattice-land is a collection of libraries abstracting our parallel model.

It provides various data types and fixpoint engine:

• ZLB, ZUB: increasing/decreasing integers.

• B: Boolean lattices.

• VStore: Array (of lattice elements).

• IPC: Arithmetic constraints.

• GaussSeidelIteration: Sequential CPU fixed point loop.

• AsynchronousIteration: GPU-accelerated fixed point loop.

• . . .

void max(int tid, const int* data, ZLB& m) {

m.tell(data[tid]);

}

AsynchronousIteration::fixpoint(max);

https://github.com/lattice-land
40

https://github.com/lattice-land

Conclusion: Theoretical Parallel Model of Computation

Data races occur rarely, so we should avoid working so much to avoid
them.

Properties of the model

A Variant of Concurrent Constraint Programming on GPU (AAAI 2022)10.

• Correct: Proofs that P;Q ≡ P||Q, parallel and sequential versions produce the same results.

• Restartable: Stop the program at any time, and restart on partial data.

• Weak memory consistency: Very few requirements on the underlying memory model ⇒ wide

compatibility across hardware, unlock optimization.

10https://ptal.github.io/papers/aaai2022.pdf

41

https://ptal.github.io/papers/aaai2022.pdf

Conclusion: Practical Implementation

“General methods that leverage computation are ultimately the most ef-
fective, and by a large margin.”—Rich Sutton

Turbo

• Simple: solving algorithms from 50 years ago.

⇒ no global constraints, nogoods learning, lazy clause generation, restart strategies, event-based

propagation, trailing or recomputation-based state restoration and domain consistency.

• Efficient: Almost on-par with Choco (algorithmic optimization VS hardware optimization).

https://github.com/ptal/turbo

But...

• Still lagging behind CP+SAT solvers, and SAT learning is inherently sequential...

• There is hope: ACE (a pure CP solver) show CP-only is still competitive in XCSP3 compet.

42

https://github.com/ptal/turbo

Conclusion: Practical Implementation

“General methods that leverage computation are ultimately the most ef-
fective, and by a large margin.”—Rich Sutton

Turbo

• Simple: solving algorithms from 50 years ago.

⇒ no global constraints, nogoods learning, lazy clause generation, restart strategies, event-based

propagation, trailing or recomputation-based state restoration and domain consistency.

• Efficient: Almost on-par with Choco (algorithmic optimization VS hardware optimization).

https://github.com/ptal/turbo

But...

• Still lagging behind CP+SAT solvers, and SAT learning is inherently sequential...

• There is hope: ACE (a pure CP solver) show CP-only is still competitive in XCSP3 compet.

42

https://github.com/ptal/turbo

