
Abstract Constraint Programming on GPU

Talk at Zhejiang University, ZLAIRE, Prof. Liao Group

Pierre Talbot

pierre.talbot@uni.lu

https://ptal.github.io

7th May 2025

University of Luxembourg

https://ptal.github.io

Who am I?

• 2014–2018: Ph.D., Sorbonne University, Paris

▶ Spacetime Programming: A Synchronous Language

for Constraint Search.

• 2018–2019: Postdoc, University of Nantes.

▶ Abstract Domains for Constraint Programming.

• 2020–2023: Postdoc, University of Luxembourg

▶ A Lattice-Based Approach for GPU Programming.

• 2023–: Research scientist, University of Luxembourg.

▶ Abstract Satisfaction.

1

My Research in a Nutshell!

I research on the “fusion” of...

Constraint reasoning + Abstract interpretation

(and lattice theory)

that gives us abstract satisfaction.

WHY?

Accelerate constraint solving

HOW?

• Combining constraint solvers

• Constructing sound solving procedure over complex domains

•

2

My Research in a Nutshell!

I research on the “fusion” of...

Constraint reasoning + Abstract interpretation

(and lattice theory)

that gives us abstract satisfaction.

WHY?

Accelerate constraint solving

HOW?

• Combining constraint solvers

• Constructing sound solving procedure over complex domains

• Constraint solving on GPUs

2

My Research in a Nutshell!

I research on the “fusion” of...

Constraint reasoning + Abstract interpretation

(and lattice theory)

that gives us abstract satisfaction.

WHY?

Accelerate constraint solving

HOW?

• Combining constraint solvers

• Constructing sound solving procedure over complex domains

• Constraint solving on GPUs ⇐ today

2

3

4

On the Menu

• Abstract Satisfaction (connection between logic and constraint reasoning)

• Abstract Constraint Programming (contribution, expressive reasoning framework)

• Abstract Constraint Programming on GPU (contribution, efficient reasoning

framework)

5

Abstract Satisfaction

5

Syntax of First-Order Logic (FOL)

Let S = ⟨X ,F ,P⟩ be a first-order signature where X set of variables, F set of function symbols

and P set of predicate symbols.

⟨t⟩ ::= x variable x ∈ X

| f (t, . . . , t) function f ∈ F

⟨φ⟩ ::= p(t, . . . , t) predicate p ∈ P

| ¬φ negation

| φ ⋄ φ connector ⋄ ∈ {∧,∨,⇒,⇔}
| ∃x , φ existential quantifier

| ∀x , φ universal quantifier

Let Φ the set of well-formed formulas.

6

Semantics of FOL

A structure A is a tuple (U, JKF , JKP) where

1. U is a non-empty set of elements—called the universe of discourse,

2. JKF is a function mapping function symbols f ∈ F with arity n to interpreted functions

Jf KF : Un → U, and

3. JKP is a function mapping predicate symbols p ∈ P with arity n to interpreted predicates

JpKP ⊆ Un.

An assignment is a function X → U mapping variables to values. We denote the set of

assignment by Asn. Let ρ ∈ Asn, we write ρ[x 7→ d] the assignment in which we updated the

value of x by d in ρ.

7

Entailment

The syntax and semantics are related by the ternary relation A ⊨ρ φ, called the entailment,

where A is a structure, ρ ∈ Asn and φ ∈ Φ. It is read as “the formula φ is satisfied by the

assignment ρ in the structure A”. We first give the interpretation function JKρ for evaluating

the terms of the language:

JxKρ = ρ(x) if x ∈ X

Jf (t1, . . . , tn)Kρ = Jf KF (Jt1Kρ, . . . , JtnKρ)

The relation ⊨ is defined inductively as follows:

A ⊨ρ p(t1, . . . , tn) iff (Jt1Kρ, . . . , JtnKρ) ∈ JpKP
A ⊨ρ φ1 ∧ φ2 iff A ⊨ρ φ1 and A ⊨ρ φ2

A ⊨ρ φ1 ∨ φ2 iff A ⊨ρ φ1 or A ⊨ρ φ2

A ⊨ρ ¬φ iff A ⊨ρ φ does not hold

A ⊨ρ ∃x , φ iff there exists d ∈ U such that A ⊨ρ[x 7→d] φ

A ⊨ρ ∀x , φ iff for all d ∈ U, we have A ⊨ρ[x 7→d] φ

8

Concrete Domain

Given a structure A, we define the concrete interpretation function as:

J.K♭ : Φ→ P(Asn)
JφK♭ = {ρ ∈ Asn | A ⊨ρ φ}

• We call the concrete domain the set P(Asn) with J.K♭.
• A solution of the formula φ is an assignment s ∈ JφK♭.
• Example in the theory of standard integer arithmetics (and X = {x , y}):

Jx < y ∧ x ≥ 0K♭ = {
{x 7→ 0, y 7→ 1}
{x 7→ 0, y 7→ 2}

. . .

{x 7→ 1, y 7→ 2}
. . .

}
9

One Problem, Many Communities, Many Formalisms

Many communities emerged to solve the same problem: find ρ such that A ⊨ρ φ.

BUT they (generally) focus on different fragments of FOL:

• Propositional fragment (SAT): (a ∨ b) ∧ (¬b ∨ c) with a, b, c ∈ {0, 1}.

• Pseudo-Boolean fragment:
∑

1≤i≤n ci ∗ ai ≤ c0 with ai ∈ {0, 1} and ci some integers constants.

• Linear programming (LP):
∑

1≤i≤n ci ∗ bi ≤ b0 with bi ∈ R and ci some real constants.

• Integer linear programming (ILP):
∑

1≤i≤n ci ∗ bi ≤ b0 with bi ∈ Z and ci some integer constants.

• Mixed integer linear programming (MILP):
∑

1≤i≤n ci ∗ bi ≤ b0 with bi ∈ Z or bi ∈ R and ci some integer

or real constants.

• Uninterpreted fragment (logic programming).

• Discrete constraint programming: ⟨X ,D,C⟩ with Di ∈ Pf (Z).

• Continuous constraint programming: ⟨X ,D,C⟩ with Di ∈ I(R).

• Satisfiability modulo theories (SMT).

• ...

10

One Theory to Rule Them All?

SAT [DHK13]

SMT [DHK14]

Logic programming [Cou20]

Constraint programming (R) [Pel+13]

Constraint programming (Z) [Tal+19]

Linear programming [CH78]

Answer set programming

...

Abstract domains

11

What is an abstract domain?

It is a lattice with some operations.

What is a lattice?

A tuple ⟨S ,⊑,⊔,⊓,⊥,⊤⟩ where S is a

set.

Example: Interval Lattice

• S ≜ {[a, b] | a ∈ Z ∪ {−∞}, b ∈
Z ∪ {∞}, a ≤ b} ∪ {⊥}

• [a, b] ⊑ [c, d] ⇔ a ≥ c ∧ b ≤ d

• ⊤ ≜ [−∞,∞]

• [a, b] ⊓ [c, d] ≜

[max{a, c},min{b, d}]

12

What is an abstract domain?

It is a lattice with some operations.

What is a lattice?

A tuple ⟨S ,⊑,⊔,⊓,⊥,⊤⟩ where S is a

set.

Example: Interval Lattice

• S ≜ {[a, b] | a ∈ Z ∪ {−∞}, b ∈
Z ∪ {∞}, a ≤ b} ∪ {⊥}

• [a, b] ⊑ [c, d] ⇔ a ≥ c ∧ b ≤ d

• ⊤ ≜ [−∞,∞]

• [a, b] ⊓ [c, d] ≜

[max{a, c},min{b, d}]

12

What is an abstract domain?

It is a lattice with some operations.

What is a lattice?

A tuple ⟨S ,⊑,⊔,⊓,⊥,⊤⟩ where S is a

set.

Example: Interval Lattice

• S ≜ {[a, b] | a ∈ Z ∪ {−∞}, b ∈
Z ∪ {∞}, a ≤ b} ∪ {⊥}

• [a, b] ⊑ [c, d] ⇔ a ≥ c ∧ b ≤ d

• ⊤ ≜ [−∞,∞]

• [a, b] ⊓ [c, d] ≜

[max{a, c},min{b, d}]

12

Simple Logic of Intervals

• Logic: Φ ≜ x ≤ k | x ≥ k | Φ ∧ Φ | Φ ∨ Φ. (only 1 variable)

• Abstract interpretation:

• Jx ≤ kK ≜ [−∞, k]

• Jx ≥ kK ≜ [k,∞]

• Jφ ∧ φ′K ≜ JφK ⊓ Jφ′K
• Jφ ∨ φ′K ≜ JφK ⊔ Jφ′K

• Example:

• J(x ≤ 10 ∧ x ≥ 0) ∨ (x ≥ 5)K
• Jx ≤ 10 ∧ x ≥ 0K ⊔ Jx ≥ 5K
• (Jx ≤ 10K ⊓ Jx ≥ 0K) ⊔ Jx ≥ 5K
• ([−∞, 10] ⊓ [0,∞]) ⊔ [5,∞]

• [0, 10] ⊔ [5,∞]

• [0,∞]

• Soundness: JφK♭ ⊆ JφK (compute all solutions).

• Completeness: JφK♭ ⊇ JφK (compute only solutions).

Intervals are not complete: Jx ≤ 10 ∨ x ≥ 15K = [−∞,∞] (intervals cannot represent “holes”).

13

Simple Logic of Intervals

• Logic: Φ ≜ x ≤ k | x ≥ k | Φ ∧ Φ | Φ ∨ Φ. (only 1 variable)

• Abstract interpretation:

• Jx ≤ kK ≜ [−∞, k]

• Jx ≥ kK ≜ [k,∞]

• Jφ ∧ φ′K ≜ JφK ⊓ Jφ′K
• Jφ ∨ φ′K ≜ JφK ⊔ Jφ′K

• Example:

• J(x ≤ 10 ∧ x ≥ 0) ∨ (x ≥ 5)K
• Jx ≤ 10 ∧ x ≥ 0K ⊔ Jx ≥ 5K
• (Jx ≤ 10K ⊓ Jx ≥ 0K) ⊔ Jx ≥ 5K
• ([−∞, 10] ⊓ [0,∞]) ⊔ [5,∞]

• [0, 10] ⊔ [5,∞]

• [0,∞]

• Soundness: JφK♭ ⊆ JφK (compute all solutions).

• Completeness: JφK♭ ⊇ JφK (compute only solutions).

Intervals are not complete: Jx ≤ 10 ∨ x ≥ 15K = [−∞,∞] (intervals cannot represent “holes”).

13

Simple Logic of Intervals

• Logic: Φ ≜ x ≤ k | x ≥ k | Φ ∧ Φ | Φ ∨ Φ. (only 1 variable)

• Abstract interpretation:

• Jx ≤ kK ≜ [−∞, k]

• Jx ≥ kK ≜ [k,∞]

• Jφ ∧ φ′K ≜ JφK ⊓ Jφ′K
• Jφ ∨ φ′K ≜ JφK ⊔ Jφ′K

• Example:

• J(x ≤ 10 ∧ x ≥ 0) ∨ (x ≥ 5)K
• Jx ≤ 10 ∧ x ≥ 0K ⊔ Jx ≥ 5K
• (Jx ≤ 10K ⊓ Jx ≥ 0K) ⊔ Jx ≥ 5K
• ([−∞, 10] ⊓ [0,∞]) ⊔ [5,∞]

• [0, 10] ⊔ [5,∞]

• [0,∞]

• Soundness: JφK♭ ⊆ JφK (compute all solutions).

• Completeness: JφK♭ ⊇ JφK (compute only solutions).

Intervals are not complete: Jx ≤ 10 ∨ x ≥ 15K = [−∞,∞] (intervals cannot represent “holes”).

13

Simple Logic of Intervals

• Logic: Φ ≜ x ≤ k | x ≥ k | Φ ∧ Φ | Φ ∨ Φ. (only 1 variable)

• Abstract interpretation:

• Jx ≤ kK ≜ [−∞, k]

• Jx ≥ kK ≜ [k,∞]

• Jφ ∧ φ′K ≜ JφK ⊓ Jφ′K
• Jφ ∨ φ′K ≜ JφK ⊔ Jφ′K

• Example:

• J(x ≤ 10 ∧ x ≥ 0) ∨ (x ≥ 5)K
• Jx ≤ 10 ∧ x ≥ 0K ⊔ Jx ≥ 5K
• (Jx ≤ 10K ⊓ Jx ≥ 0K) ⊔ Jx ≥ 5K
• ([−∞, 10] ⊓ [0,∞]) ⊔ [5,∞]

• [0, 10] ⊔ [5,∞]

• [0,∞]

• Soundness: JφK♭ ⊆ JφK (compute all solutions).

• Completeness: JφK♭ ⊇ JφK (compute only solutions).

Intervals are not complete: Jx ≤ 10 ∨ x ≥ 15K = [−∞,∞] (intervals cannot represent “holes”). 13

What About Multiple Variables?

We lift interval to a function X → Itv mapping variables to intervals where Itv is the interval

lattice.

Now, we can define (with x ∈ X any variable):

• Jx ≤ kK ≜ {x 7→ [−∞, k]}.
• Jx ≥ kK ≜ {x 7→ [k ,∞]}.
• ...

Example: Jx ≤ 0 ∧ y ≥ 0K = {x 7→ [−∞, 0], y 7→ [0,∞]}.

How to compute solutions of more expressive logic?

14

What About Multiple Variables?

We lift interval to a function X → Itv mapping variables to intervals where Itv is the interval

lattice.

Now, we can define (with x ∈ X any variable):

• Jx ≤ kK ≜ {x 7→ [−∞, k]}.
• Jx ≥ kK ≜ {x 7→ [k ,∞]}.
• ...

Example: Jx ≤ 0 ∧ y ≥ 0K = {x 7→ [−∞, 0], y 7→ [0,∞]}.

How to compute solutions of more expressive logic?

14

Abstract Constraint Programming

14

Constraint Programming

Constraint programming: FOL without quantifiers, U = Z and arithmetic constraints.

• Declarative paradigm: specify your problem and let the computer solves it for you.

• Many applications: scheduling, bin-packing, hardware design, satellite imaging, . . .

• Constraint programming is one approach to solve such combinatorial problems.

• Other approaches include SAT, linear programming, SMT, MILP, ASP,...

15

5

Satellite image mosaic

State of the art

After a query with certain parameters:

N = 30 satellite images

Find the cover with the minimum number
of images (NP-Hard)

Build the mosaic

1

1Combarro et al., Constraint Model for the Satellite Image Mosaic Selection Problem, CP 2023

16

Constraint model of satellite imaging in MiniZinc:

17

Constraint Network

Constraint Network

Let X be a finite set of variables and C be a finite set of constraints.

A constraint network is a pair P = ⟨d ,C ⟩ such that d ∈ X → Itv is the domain of the

variables where Itv is the set of intervals.

Note: It is just a ”format” to represent quantifier-free logical formulas where variables have

bounded domains.

Example

⟨{x 7→ [0, 2], y 7→ [2, 3]}, {x ≤ y − 1}⟩

A solution is {x 7→ 0, y 7→ 2}.

18

Constraints with Multiple Variables

• We already have: Jx ≤ kK ≜ {x 7→ [−∞, k]}.

• Also: Jx = kK ≜ {x 7→ [k, k]}.

How to interpret Jx = yK?

• Unfortunately, without more information on x and y , we must set

Jx = yK ≜ {x 7→ [−∞,∞], y 7→ [−∞,∞]}, which is the same than ignoring the constraint...

Solution: give more information to the interpretation function.

• IJ.K ∈ Φ× (X → Itv) → (X → Itv)

• IJx = yKd ≜ {x 7→ d(x) ⊓ d(y), y 7→ d(x) ⊓ d(y)}

Example: Let d = {x 7→ [0, 5], y 7→ [5, 10]}, then IJx = yKd = {x 7→ [5, 5], y 7→ [5, 5]}.

19

Constraints with Multiple Variables

• We already have: Jx ≤ kK ≜ {x 7→ [−∞, k]}.

• Also: Jx = kK ≜ {x 7→ [k, k]}.

How to interpret Jx = yK?

• Unfortunately, without more information on x and y , we must set

Jx = yK ≜ {x 7→ [−∞,∞], y 7→ [−∞,∞]}, which is the same than ignoring the constraint...

Solution: give more information to the interpretation function.

• IJ.K ∈ Φ× (X → Itv) → (X → Itv)

• IJx = yKd ≜ {x 7→ d(x) ⊓ d(y), y 7→ d(x) ⊓ d(y)}

Example: Let d = {x 7→ [0, 5], y 7→ [5, 10]}, then IJx = yKd = {x 7→ [5, 5], y 7→ [5, 5]}.

19

Constraints with Multiple Variables

• We already have: Jx ≤ kK ≜ {x 7→ [−∞, k]}.

• Also: Jx = kK ≜ {x 7→ [k, k]}.

How to interpret Jx = yK?

• Unfortunately, without more information on x and y , we must set

Jx = yK ≜ {x 7→ [−∞,∞], y 7→ [−∞,∞]}, which is the same than ignoring the constraint...

Solution: give more information to the interpretation function.

• IJ.K ∈ Φ× (X → Itv) → (X → Itv)

• IJx = yKd ≜ {x 7→ d(x) ⊓ d(y), y 7→ d(x) ⊓ d(y)}

Example: Let d = {x 7→ [0, 5], y 7→ [5, 10]}, then IJx = yKd = {x 7→ [5, 5], y 7→ [5, 5]}.

19

How to Deal with Conjunction?

• Before, we had Jφ ∧ φ′K ≜ JφK ⊓ Jφ′K.

• Now, we can lift this function to

IJφ ∧ φ′Kd ≜ IJφKd ⊓ IJφ′Kd

Problem: d must be copied... inefficient
• Instead, we can use functional composition:

IJφ ∧ φ′Kd ≜ (IJφK ◦ IJφ′K)d

20

How to Deal with Conjunction?

• Before, we had Jφ ∧ φ′K ≜ JφK ⊓ Jφ′K.

• Now, we can lift this function to

IJφ ∧ φ′Kd ≜ IJφKd ⊓ IJφ′Kd

Problem: d must be copied... inefficient

• Instead, we can use functional composition:

IJφ ∧ φ′Kd ≜ (IJφK ◦ IJφ′K)d

20

How to Deal with Conjunction?

• Before, we had Jφ ∧ φ′K ≜ JφK ⊓ Jφ′K.

• Now, we can lift this function to

IJφ ∧ φ′Kd ≜ IJφKd ⊓ IJφ′Kd

Problem: d must be copied... inefficient
• Instead, we can use functional composition:

IJφ ∧ φ′Kd ≜ (IJφK ◦ IJφ′K)d

20

Computing Solutions of Constraint Network

A constraint network ⟨d ,C ⟩ is a conjunctive collection of constraints. So we can compute the

set of solutions using:

IJc1 ∧ c2 ∧ . . . ∧ cnK = IJc1K ◦ IJc2K ◦ . . . ◦ IJcnK

Example: Let ⟨d , {x = y , y = z}⟩ be a constraint network with

d = {x 7→ [2, 2], y 7→ [1, 2], z 7→ [0, 2]}, then:

IJx = y ∧ y = zKd
= (IJx = yK ◦ IJy = zK)d
= IJx = yK(IJy = zK(d))
= IJx = yK({x 7→ [2, 2], y 7→ [1, 2], z 7→ [1, 2]}
= {x 7→ [2, 2], y 7→ [2, 2], z 7→ [1, 2]}

We are not very precise... z = [1, 2] instead of z = [2, 2].

21

Computing Solutions of Constraint Network

A constraint network ⟨d ,C ⟩ is a conjunctive collection of constraints. So we can compute the

set of solutions using:

IJc1 ∧ c2 ∧ . . . ∧ cnK = IJc1K ◦ IJc2K ◦ . . . ◦ IJcnK

Example: Let ⟨d , {x = y , y = z}⟩ be a constraint network with

d = {x 7→ [2, 2], y 7→ [1, 2], z 7→ [0, 2]}, then:

IJx = y ∧ y = zKd
= (IJx = yK ◦ IJy = zK)d
= IJx = yK(IJy = zK(d))
= IJx = yK({x 7→ [2, 2], y 7→ [1, 2], z 7→ [1, 2]}
= {x 7→ [2, 2], y 7→ [2, 2], z 7→ [1, 2]}

We are not very precise... z = [1, 2] instead of z = [2, 2].

21

Computing the Greatest Fixpoint

• d1 = {x 7→ [2, 2], y 7→ [1, 2], z 7→ [0, 2]}.
• d2 = IJx = y ∧ y = zKd1 = {x 7→ [2, 2], y 7→ [2, 2], z 7→ [1, 2]}.

• More precision? We can apply the function again!

• d3 = IJx = y ∧ y = zKd2 = {x 7→ [2, 2], y 7→ [2, 2], z 7→ [2, 2]}.
• Again? d3 = IJx = y ∧ y = zKd3, nothing changed! We reached a fixpoint.

For all formulas φ, IJφK is a monotone function.

Hence, we are guaranteed to find the greatest fixpoint, which is unique (Tarski theorem).

Constraint propagation is an approach to compute efficiently the greatest fixpoint:

gfpd IJc1K ◦ . . . ◦ IJcnK

22

Computing the Greatest Fixpoint

• d1 = {x 7→ [2, 2], y 7→ [1, 2], z 7→ [0, 2]}.
• d2 = IJx = y ∧ y = zKd1 = {x 7→ [2, 2], y 7→ [2, 2], z 7→ [1, 2]}.
• More precision? We can apply the function again!

• d3 = IJx = y ∧ y = zKd2 = {x 7→ [2, 2], y 7→ [2, 2], z 7→ [2, 2]}.

• Again? d3 = IJx = y ∧ y = zKd3, nothing changed! We reached a fixpoint.

For all formulas φ, IJφK is a monotone function.

Hence, we are guaranteed to find the greatest fixpoint, which is unique (Tarski theorem).

Constraint propagation is an approach to compute efficiently the greatest fixpoint:

gfpd IJc1K ◦ . . . ◦ IJcnK

22

Computing the Greatest Fixpoint

• d1 = {x 7→ [2, 2], y 7→ [1, 2], z 7→ [0, 2]}.
• d2 = IJx = y ∧ y = zKd1 = {x 7→ [2, 2], y 7→ [2, 2], z 7→ [1, 2]}.
• More precision? We can apply the function again!

• d3 = IJx = y ∧ y = zKd2 = {x 7→ [2, 2], y 7→ [2, 2], z 7→ [2, 2]}.
• Again? d3 = IJx = y ∧ y = zKd3, nothing changed! We reached a fixpoint.

For all formulas φ, IJφK is a monotone function.

Hence, we are guaranteed to find the greatest fixpoint, which is unique (Tarski theorem).

Constraint propagation is an approach to compute efficiently the greatest fixpoint:

gfpd IJc1K ◦ . . . ◦ IJcnK

22

Computing the Greatest Fixpoint

• d1 = {x 7→ [2, 2], y 7→ [1, 2], z 7→ [0, 2]}.
• d2 = IJx = y ∧ y = zKd1 = {x 7→ [2, 2], y 7→ [2, 2], z 7→ [1, 2]}.
• More precision? We can apply the function again!

• d3 = IJx = y ∧ y = zKd2 = {x 7→ [2, 2], y 7→ [2, 2], z 7→ [2, 2]}.
• Again? d3 = IJx = y ∧ y = zKd3, nothing changed! We reached a fixpoint.

For all formulas φ, IJφK is a monotone function.

Hence, we are guaranteed to find the greatest fixpoint, which is unique (Tarski theorem).

Constraint propagation is an approach to compute efficiently the greatest fixpoint:

gfpd IJc1K ◦ . . . ◦ IJcnK

22

Propagate and Search

The main algorithm behind constraint solvers:

function solve(d , {c1, . . . , cn})
d ← gfpd IJc1K ◦ . . . ◦ IJcnK
if ∀x ∈ X , d(x) = [v , v] then return {d}
else if ∃x ∈ X , d(x) = ⊥ then return {}
else

⟨d1, . . . , dn⟩ ← split(d)

return
⋃n

i=0 solve(di ,C)

end if

end function

Thanks to the split function, the algorithm is sound and complete.

23

Constraint Programming on GPU

23

Why Constraint Programming on GPU?

23

Why CP on GPU?

CPU clock speed is stagnating, GPU #cores is increasing quickly each year.

Easy speed-up: same code but faster.

24

Why CP on GPU?

• Machine learning (deep learning, reinforcement learning, . . .) has seen tremendous

speed-ups (e.g. 100x, 1000x) by using GPU.

• Some (sequential) optimizations on CPU are made irrelevant if we can explore huge state

space faster.

Can we replicate the success of GPU on machine learning

applications to combinatorial optimization?

25

Constraint Programming on GPU

The rest of this talk:

• GPU Architecture.

• Challenges of Constraint Programming on GPU.

• Parallel Model of Computation.

• Ternary Constraint Network.

26

GPU Architecture

26

(Simplified) Architecture of the GPU Nvidia V100

...

Global memory (32 GB)

L2 Cache (6MB)

SM 1 (128 KB L1 Cache
256 KB registers)

64 cores

8 TPUs

SM 80 (128 KB L1 Cache
256 KB registers)

64 cores

8 TPUs

5120 cores on a single V100 GPU @ 1290MHz

Whitepaper: https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

27

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Programming Challenges

• Memory coalescence: the way to access the data is important (factor 10).

• Thread divergence: each thread within a warp (group of 32 threads) should execute the

same instructions.

• Memory allocation (dynamic data structures): costly on GPU, everything is generally

pre-allocated.

• Other limitations: small cache, limited number of lines of code, limited STL...

28

Example: Find the Minimum in an Array (CPU Style)

Each thread computes its local min (map), then we compute the min of all local min (reduce).

• Map:

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

Thread 0, m0 = 3 Thread 1, m1 = 1 Thread 2, m2 = 3 Thread 3, m3 = 7

• Reduce: min([3, 1, 3, 7]) = 1.

29

Example: Find the Minimum in an Array (CPU Style)

Iteration 1:

• Map:

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

Thread 0, m0 = 3 Thread 1, m1 = 1 Thread 2, m2 = 3 Thread 3, m3 = 7

• Reduce: min([3, 1, 3, 7]) = 1.

29

Example: Find the Minimum in an Array (CPU Style)

Iteration 2:

• Map:

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

Thread 0, m0 = 3 Thread 1, m1 = 1 Thread 2, m2 = 3 Thread 3, m3 = 7

• Reduce: min([3, 1, 3, 7]) = 1.

29

Example: Find the Minimum in an Array (CPU Style)

Iteration 3:

• Map:

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

Thread 0, m0 = 3 Thread 1, m1 = 1 Thread 2, m2 = 3 Thread 3, m3 = 7

• Reduce: min([3, 1, 3, 7]) = 1.

29

Example: Find the Minimum in an Array (CPU Style)

Iteration 4:

• Map:

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

Thread 0, m0 = 3 Thread 1, m1 = 1 Thread 2, m2 = 3 Thread 3, m3 = 7

• Reduce: min([3, 1, 3, 7]) = 1.

29

Optimization: Coalesced Memory Accesses

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2

Very important: up to an order of magnitude faster (10x).

30

Optimization: Coalesced Memory Accesses

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2

Very important: up to an order of magnitude faster (10x).

30

Optimization: Coalesced Memory Accesses

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2

Very important: up to an order of magnitude faster (10x).

30

Optimization: Coalesced Memory Accesses

3 22 10 23 21 7 91 1 3 10 42 11 8 7 32

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2

Very important: up to an order of magnitude faster (10x).

30

Challenges of Constraint Programming on GPU

30

On CPU: Embarrasingly Parallel Search (EPS)2

• Idea: Divide the problem into many subproblems beforehand (e.g. N × 30 with N the number of

threads).

• Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other

subproblems.

Subproblems

Threads pool

...

T1 T2 T3 T2 T1 T1 T3 T2 T2 T1

2A. Malapert et al., ‘Embarrassingly Parallel Search in Constraint Programming’, JAIR, 2016

31

On CPU: Embarrasingly Parallel Search (EPS)

• Idea: Divide the problem into many subproblems beforehand (e.g. N × 30 with N the number of

threads).

• Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other

subproblems.

Subproblems

Threads pool

...

T1 T2 T3 T2 T1 T1 T3 T2 T2 T1

⇒ Other approach: In modern solvers (e.g., Choco, OR-Tools), they use a portfolio approach (e.g.,

different split strategy on the same problem).

31

On CPU: Embarrasingly Parallel Search (EPS)

• Idea: Divide the problem into many subproblems beforehand (e.g. N × 30 with N the number of

threads).

• Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other

subproblems.

Subproblems

Threads pool

...

T1 T2 T3 T2 T1 T1 T3 T2 T2 T1

On GPU architectures, 1 subproblem per thread is not efficient (limited cache).

⇒ Need to parallelize propagation: gfpd IJc1K ◦ . . . ◦ IJcnK.

31

Where is the Challenge?

Parallelizing gfpd IJc1K ◦ . . . ◦ IJcnK is challenging because constraints share variables, and we

have typical shared state memory issues such data races and inefficiencies.

Contributions

• New parallel model of computation to execute propagators in parallel2:

gfpd IJc1K ∥ . . . ∥ IJcnK
• Ternary constraint network: representation of constraints suited for GPU architectures3.

• First general constraint solver fully executing on GPU.

⇒ Open-source: Publicly available on https://github.com/ptal/turbo.

2P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.
3P. Talbot, Ternary Constraint Network for Efficient Integer Bound Propagation on GPU, submitted, 2025.

32

https://github.com/ptal/turbo

Parallel Model of Computation

32

Parallel Model of Computation

f

g

[0..3]

[1..3]

[2..3]

[3..3]

⊥

[0..2]

[0..1] [1..2]

[0..0] [1..1] [2..2]

• f (x) ≜ x ⊓ [2..∞] models the constraint x ≥ 2.

• g(x) ≜ x ⊓ [−∞..2] models the constraint x ≤ 2.

• Parallel execution: f || g = [2..2]

33

Example of Parallel Propagation

Let’s consider IJx ≤ 4 ∧ x ≤ 5K = IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞,∞]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).

34

Example of Parallel Propagation

Let’s consider IJx ≤ 4 ∧ x ≤ 5K = IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, ?]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).

34

Example of Parallel Propagation

Let’s consider IJx ≤ 4 ∧ x ≤ 5K = IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, 5]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).

34

Example of Parallel Propagation

Let’s consider IJx ≤ 4 ∧ x ≤ 5K = IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, 5]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).

34

Example of Parallel Propagation

Let’s consider IJx ≤ 4 ∧ x ≤ 5K = IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, 5]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).

34

Example of Parallel Propagation

Let’s consider IJx ≤ 4 ∧ x ≤ 5K = IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, 4]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).

34

Example of Parallel Propagation

Let’s consider IJx ≤ 4 ∧ x ≤ 5K = IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, 5]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).

34

Example of Parallel Propagation

Let’s consider IJx ≤ 4 ∧ x ≤ 5K = IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞, 4]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).
34

Ternary Constraint Network

34

Representation of Propagators

• Represented using shared_ptr and variant data

structures.

⇒ Uncoalesced memory accesses.

• Code similar to an interpreter:

switch(term.index()) {

case IVar:

case INeg:

case IAdd:

case IMul:

// ...

⇒ Thread divergence.

35

Ternary Normal Form (TNF)

We simplify the representation of constraints to ternary constraints of the form:

• x = y <op> z where x,y,z are variables.

• The operators are {+, /, ∗,mod ,min,max ,≤,=}.

Example

The constraint x + y ̸= 2 is represented by:

t1 = x + y

ZERO = (t1 = TWO) equivalent to false ⇔ (t1 = 2)

where ZERO and TWO are two variables with constant values.

36

Bytecode Representation

The ternary form of a propagator holds on 16 bytes:

struct bytecode_type {

int op;

int x;

int y;

int z;

};

• Uniform representation of propagators in memory ⇒ coalesced memory accesses.

• Limited number of operators + sorting ⇒ reduced thread divergence.

37

Drawback of TNF: increase in number of propagators and variables.

Benchmark on the MiniZinc Challenge 2024 (89 instances)

100 101 102

Variables (log scale)

100

101

102

103

Co
ns

tra
in

ts
 (l

og
 sc

al
e)

MiniZinc instances

The median increase of variables is 4.76x and propagators is 4.33x.
38

Divergence?

x
=

y
+

z

x
=

m
ax

(y
,z

)

x
=

(y
=

z)

x
=

y
z

x
=

m
in

(y
,z

)

x
=

y
*z

0=
(y

=
z)

Operators

accap

aircraft-disassembly

cable-tree-wiring

community-detection

compression

concert-hall-cap

fox-geese-corn

graph-clear

hoist-benchmark

monitor-placement-1id

neighbours

network_50_cstr

peacable_queens

portal

tiny-cvrp

train-scheduling

triangular

word-equations

Normalized Operator Usage Across Instances

0

20

40

60

80

100

The problems use few operators: limited divergence.

39

Benchmarks: Turbo vs Choco v4.18

Comparison of the best objective values found (timeout: 20 mins, GPU: H100).

40

Conclusion

40

Conclusion: Theoretical Parallel Model of Computation

Data races occur rarely, so we should avoid working so much to avoid
them.

Properties of the model

A Variant of Concurrent Constraint Programming on GPU (AAAI 2022)4.

• Correct: Proofs that P;Q ≡ P||Q, parallel and sequential versions produce the same results.

• Restartable: Stop the program at any time, and restart on partial data.

• Weak memory consistency: Very few requirements on the underlying memory model ⇒ wide

compatibility across hardware, unlock optimization.

4https://ptal.github.io/papers/aaai2022.pdf

41

https://ptal.github.io/papers/aaai2022.pdf

Conclusion: Practical Implementation

Turbo

• Simple: solving algorithms from 50 years ago.

⇒ no global constraints, nogoods learning, lazy clause generation, restart strategies, event-based

propagation, trailing or recomputation-based state restoration and domain consistency.

• Efficient: Almost on-par with Choco (algorithmic optimization VS hardware optimization).

https://github.com/ptal/turbo

But...

• Still lagging behind CP+SAT solvers, and SAT learning is inherently sequential...

• There is hope: ACE (a pure CP solver) show CP-only is still competitive in XCSP3 compet.

42

https://github.com/ptal/turbo

Conclusion: Practical Implementation

Turbo

• Simple: solving algorithms from 50 years ago.

⇒ no global constraints, nogoods learning, lazy clause generation, restart strategies, event-based

propagation, trailing or recomputation-based state restoration and domain consistency.

• Efficient: Almost on-par with Choco (algorithmic optimization VS hardware optimization).

https://github.com/ptal/turbo

But...

• Still lagging behind CP+SAT solvers, and SAT learning is inherently sequential...

• There is hope: ACE (a pure CP solver) show CP-only is still competitive in XCSP3 compet.

42

https://github.com/ptal/turbo

Joint Projects?

• Abstract interpretation of abstract argumentation framework

• Is it possible to use abstract interpretation for non-monotone logic?

• Could be useful to combine abstract argumentation and FOL (not everything is

non-monotone?).

• GPU-accelerated abstract argumentation

• Does not seem to exist yet.

• On CPU: “Cerutti, Federico, et al. Exploiting parallelism for hard problems in abstract

argumentation., AAAI-15”

• Based on strongly connected component (SCC).

• SCC is also useful for constraint reasoning (all-different constraint).

• Many smaller projects directly relevant to the topic of today (but not to abstract

argumentation).

43

