
Decomposition and Preprocessing of Ternary
Constraint Networks
Pierre Talbot #�

University of Luxembourg, Luxembourg

Abstract
Constraint programming is a general and exact method based on constraint propagation and backtracking search.
We provide a function decomposing a constraint network into a ternary constraint network (TCN) with a reduced
number of operators. TCNs are not new and have been used since the inception of constraint programming,
notably in constraint logic programming systems. This work aims to specify formally the decomposition function
of discrete constraint network into TCN and its preprocessing. We aim to be self-contained and descriptive
enough to serve as the basis of an implementation. Our primary usage of TCN is to obtain a regular data layout
of constraints to efficiently execute propagators on graphics processing unit (GPU) hardware.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Ternary constraint network, constraint programming

1 Introduction

Constraint programming is a general and exact method based on constraint propagation and back-
tracking search [7]. We provide a function decomposing a constraint network into a ternary constraint
network (TCN) with a reduced number of operators (Section 3). TCN are not new and have been
used since the inception of constraint programming, notably in constraint logic programming sys-
tems [16, 5, 3]. Our contribution is to specify the decomposition function of discrete constraint
network into TCN (Section 3). Furthermore, as the size of the decomposition is up to 3 orders of
magnitude larger than the initial constraint network, we apply several known preprocessing techniques
to reduce its size (Section 4). Over the 100 instances of the MiniZinc 2024 challenge [13], the median
increase is 4.8x in the number of variables and 4.5x in the number of constraints, although 12 instances
remain more than 100x larger. Our paper aims to be self-contained and descriptive enough to serve as
the basis of an implementation. We implemented the decomposition and preprocessing of MiniZinc
constraint networks in our constraint solver Turbo [15].

Our primary usage of TCN is to obtain a regular data layout of constraints to efficiently execute
propagators on graphics processing unit (GPU) hardware. Another use-case of TCN is for education.
We have used this formalism to teach constraint programming and program solvers that can be used
on MiniZinc instances [8]. TCNs are useful to describe propagation and focus on the fundamental of
constraint programming.

2 Constraint Programming

In the following, we consider constraint programming over integer variables only. Let X be a finite
set of variables and C be a finite set of constraints. For each constraint c ∈ C, let scp(c) ⊆ X

be the set of free variables of c, called its scope—for instance, scp(x < y) = {x, y}. Without
loss of generality, we represent the domain of variables using intervals. Let I = {[ℓ, u] | ℓ ∈
Z∪ {−∞}, u ∈ Z∪ {+∞}, ℓ ≤ u} ∪ {⊥} be the set of intervals ordered by inclusion with a special
element ⊥ representing the empty interval. We define lb([ℓ, u]) ≜ ℓ and ub([ℓ, u]) ≜ u to extract
the lower and upper bounds. A constraint network is a pair P = ⟨d, C⟩ such that d ∈ X → I

is the domain function.We denote D the set of all domain functions X → I ordered pointwise
(d ≤ d′ ⇔ ∀x ∈ X, d(x) ⊆ d′(x)). An assignment is a map asn : X → Z, and we denote the set of

ar
X

iv
:2

51
1.

11
87

2v
1

 [
cs

.S
C

]
 1

4
N

ov
 2

02
5

mailto:pierre.talbot@uni.lu
https://orcid.org/0000-0001-9202-4541
https://arxiv.org/abs/2511.11872v1

2 Decomposition and Preprocessing of Ternary Constraint Networks

all assignments by Asn. The set of solutions of a constraint is given by rel(c) ⊆ Asn. The set of
solutions of a constraint network is:

sol(d, C) ≜ {asn ∈ Asn | ∀c ∈ C, asn ∈ rel(c) ∧ ∀x ∈ X, asn(x) ∈ d(x)}

An interval propagator is a function pc : D→ D where c ∈ C is a constraint. Let d ∈ D, then a
propagator is reductive (pc(d) ≤ d), monotone (d ≤ d′ ⇒ pc(d) ≤ pc(d′)) and sound (sol(d, {c}) ⊆
sol(pc(d), {})). It is also complete on singleton intervals: whenever ∀x ∈ scp(c), ∃v ∈ Z, d(x) =
[v, v], then sol(d, {c}) ⊇ sol(pc(d), {}).

Constraint propagation consists in finding the greatest fixpoint of a set of propagators {p1, . . . , pn}
over a domain d ∈ X → I . As long as the propagators are executed fairly, their order of execution
does not matter and the same greatest fixpoint is always eventually reached [1]. This fact has been
used to design various propagation algorithms to accelerate the computation of the fixpoint [11, 14].
As constraint propagation is sound but incomplete in general, it must be interleaved with a search
procedure. Let split ∈ D → P(D) be a strictly reductive (∀d ∈ D, ∀d′ ∈ split(d), d′ < d) and
sound and complete (∀d ∈ D,

⋃
{sol(d′, C) | d′ ∈ split(d)} = sol(d, C))) branching procedure.

We introduce next a standard optimization algorithm based on the propagate-and-search constraint
solving algorithm. The following algorithm finds a solution best ∈ D which minimizes the value of
the variable z ∈ X .

function minimize(d, C, best, z)
d(z)← d(z) ∩ [−∞, lb(best(z))− 1]
propagate(d, C)
if isasn(d) then

best ← d

else if ¬isbot(d) then
∀d′ ∈ split(d), minimize(d′, C, best, z)

end if
end function

with
propagate(d, {c1, . . . , cn}) computes the greatest fixpoint of pc1 ◦ . . . ◦ pcn

below d.
isasn(d) ≜ ∀x ∈ X, ∃v ∈ Z, d(x) = [v, v]
isbot(d) ≜ ∃x ∈ X, d(x) = ⊥

Here and thereafter, we always pass parameters by reference. The function isasn tests if d maps only
to interval singletons (assignment) and isbot tests whether a variable has an empty domain, in which
case we must backtrack. It is well-known that the algorithm minimize is a sound and complete
solving procedure, see e.g. [7, 14]. The result holds even in the presence of infinite intervals as long
as they become finite after a finite number of propagation steps.

Representation of Propagators

It is possible to construct an infinite number of constraints, take for example the sequence ⟨x1 =
x2, x1 = x2 ⊙1 x3, x1 = x2 ⊙1 x3 ⊙2 x4, . . .⟩ for a sequence of arithmetic operators ⟨⊙1,⊙2, . . .⟩.
Therefore, we cannot implement a different propagator function for each possible constraint. His-
torically, solvers have limited their constraint languages in order to avoid implementing too many
different propagators [16, 5, 3]. More complex constraints must be rewritten into supported constraints
automatically or by the user. The indexicals approach is a particularly concise way of specifying
propagators by mean of a few primitive constructions [4, 17].

However, the decomposition of constraints into primitive ones increase the number of auxiliary
variables and propagators. It has been shown to be detrimental to the solver performance [12, 6].

P. Talbot 3

Therefore, the key idea is to implement a propagator as an interpreter over the abstract syntax tree
(AST) of the constraint. The propagator recursively traverses the AST to evaluate each node and
compute the domain of each subexpression of the constraint. It is called a view-based propagator in
recent work [12, 6], but a similar technique was already used in the HC-4 consistency algorithm [2].

Modern constraint solvers such as Choco and OR-Tools implement view-based propagation using
inheritance to represent the AST, and subtype polymorphism to evaluate the tree. To avoid the
overhead caused by dynamic subtyping, parametric polymorphism has also been used [6, 12], but it
has the inconvenient that the solver must be recompiled for each new constraint problem tackled.

3 Ternary Constraint Network

In this section, we rewrite any constraint network into a ternary constraint network (TCN), that
is, a constraint network with only constraints of arity 3 such as x = y + z and b = (x ≤ y) with
{x, y, z, b} ⊆ X .

▶ Definition 1. A ternary constraint network ⟨d, C⟩ is a constraint network such that each c ∈ C

is of the form x = y ⊙ z where x, y, z ∈ X are variables and ⊙ is a binary operator.

In this paper, the set of supported operators is ⊙ ∈ OP = {+, ∗, /, mod, min, max, =,≤}1. The
constraint language considered is sufficient to support all instances of the 2024 MiniZinc challenge.
Unary constraints of the form x = k, x ≤ k and x ≥ k where x ∈ X and k ∈ Z are directly
represented as domains of the variables. The definition of the set OP could be different. For instance,
the constraint x = min(y, z) can be rewritten into −x = max(−y,−z) which, when decomposed
into ternary constraints, gives ∃x′, ∃y′, ∃z′, x′ = max(y′, z′)∧x′ = zero−x∧y′ = zero−y∧z′ =
zero − z, with d(zero) = [0, 0]. It allows OP to be smaller, but it introduces three new variables
and constraints. The min and max are particularly important since they also encode disjunction and
conjunction, and it is preferable to keep them both. The lack of subtraction is justified by the relational
semantics of constraints as we can rewrite x = y − z into y = x + z without loss of precision.

We now give a complete decomposition of a constraint network into a TCN, along with the proof
that a TCN has exactly the same set of solutions than the initial constraint network. Note that the
global constraints are decomposed in primitive constraints before this decomposition and using the
MiniZinc compiler in the experiments.

Let ⟨d ∈ X → I, C⟩ be a constraint network. We introduce the function tcn(d, C) = ⟨d′, C ′⟩
rewriting a constraint network into a ternary constraint network. The constraint language considered
for C is sufficient to support all instances of the 2024 MiniZinc challenge. The function tcn only adds
new variables and therefore we have dom(d) ⊆ dom(d′) where dom is the domain of the function
d. For clarity, we denote by L b X Y M the function returning X if the expression b is true and Y

otherwise. We also use the let expression let x = E in E′ which binds the result of the evaluation of
the expression E to the variable x, and returns the evaluation of the expression E′ where E′ can use
x. It extends naturally to the case where E returns a tuple of values, e.g. let x, y = E in E′.

1 We follow MiniZinc semantics by using truncated integer division and Euclidean modulus.

4 Decomposition and Preprocessing of Ternary Constraint Networks

We first define several functions to extend a constraint network with a new variable x /∈ dom(d),
and to update a variable already in d:

extend(d, x, [ℓ, u]) = (d ∪ {x 7→ [ℓ, u]}, x)
extend(d, x) = extend(d, x, [−∞,∞])
extend(d) = extend(d, fresh(d))
extendB(d) = extend(d, fresh(d), [0, 1])
extendco(d, k) =

let c = __CONSTANT_L k < 0 mk k M in
L c ∈ dom(d) (d, c) extend(d, c, [k, k]) M

update(d, x, [ℓ, u]) =
{y 7→ L x = y [ℓ, u] ∩ d(y) d(y) M | y ∈ dom(d)}

The function fresh(d) returns a new variable’s name x such that x /∈ dom(d). We use the function
extendB to create a new Boolean variable. To avoid creating different variables with the same constant
value, we create a unique name for each constant. For instance, __CONSTANT_5 is the name of
the variable for the constant 5, and __CONSTANT_m1 for the constant −1. We suppose that no
variable’s name in the initial constraint network is of this form. The function update(d, x, [ℓ, u])
intersects the domain [ℓx, ux] of a variable x with an interval [ℓ, u], where interval intersection is
defined as [ℓx, ux] ∩ [ℓ, u] ≜ [max{ℓx, ℓ}, min{ux, u}].

The function tcn(d, C) = ⟨d′, C ′⟩ rewrites each constraint to be ternary:

tcn(d, {}) = ⟨d, {}⟩

tcn(d, {c1, c2, . . . , cn}) =
let d, T = tcn(d, {c2, . . . , cn}) in
let d, U, x = tc(d, c1) in
⟨update(d, x, [1, 1]), T ∪ U⟩

Each constraint c ∈ C is rewritten into a set T of TCN constraints, possibly with new variables in d,
using the function tc. The variable x is a Boolean variable reifying the constraint c. As we are in
the top-level conjunction, we must set this variable to 1 to activate the constraint which is done by
updating its domain.

We introduce the recursive function tc(d, t) = (d′, T, x) which rewrites a term or constraint t into
a set T of TCN constraints. The result of the expression t (or its reification status if it is a constraint)
is stored in the variable x. We first consider the base cases (variables and constants) and unary
constraints (arithmetic negation −, set membership ∈ and absolute value function abs). Variables
are simply returned as any variable occurring in a constraint must already be in d. A new variable is
created for each distinct constant k using extendco defined above. Unary constraints are rewritten
using equivalent ternary constraints. For the set membership, we need the function itvs(S) to turn a
set S into a set of intervals, for instance itvs({1, 2, 3, 5}) = {[1, 3], [5, 5]}. The rewriting strategy is
always the same: we first rewrite the parameters of the function or predicate, and then assemble the
results to rewrite the current expression.

P. Talbot 5

tc(d, x) = (d, {}, x)

tc(d,−t) = tc(d, 0− t)

tc(d, t ∈ S) =
let d, T, x = tc(d, t) in
let d = update(d, x, [min S, max S]) in
let d, U, y =

tc(d,
∨

[ℓ,u]∈itvs(S)(x ≥ ℓ ∧ x ≤ u)) in
(d, T ∪ U, y)

tc(d, k) =
let d, x = extendco(d, k) in
(d, {}, x)

tc(d, abs(t)) =
let d, T, x = tc(d, t) in
let d, U, y = tc(d, 0− x) in
let d, V, z = tc(d, max(x, y)) in
let d = update(d, z, [0,∞])
tc(d, T ∪ U ∪ V, z)

The rewriting of binary operators ⊙ ∈ OP is factored into a single function. When the operator is
Boolean (≤, =), the result is stored into a Boolean variable, otherwise in an integer variable. The other
operators can be rewritten into expressions containing operators in OP . In particular, as subtraction
is the inverse of addition, we have x = y − z ⇔ y = x + z. It is not the case of multiplication
and division over integers, which is why we keep both operators. We rewrite the operator ̸= by
negating equality. As we could be in a reified context, we cannot simply add the TCN constraint
zero = (x = y), which is why we delegate the rewriting to logical equivalence.

tc(d, t1 ⊙ t2) =
let d, x =

L ⊙ ∈ {≤, =} extendB(d) extend(d) M in
let d, T, y = tc(d, t1) in
let d, U, z = tc(d, t2) in
(d, T ∪ U ∪ {x = y ⊙ z}, x)

tc(d, t1 ̸= t2) =
let d, zero = extendco(d, 0) in
tc(d, zero ⇔ t1 = t2)

tc(d, t1 − t2) =
let d, x = extend(d) in
let d, T, y = tc(d, t1) in
let d, U, z = tc(d, t2) in
(d, T ∪ U ∪ {y = x + z}, x)

tc(d, t1 ≥ t2) = tc(d, t2 ≤ t1)
tc(d, t1 > t2) = tc(d, t2 ≤ t1 − 1)
tc(d, t1 < t2) = tc(d, t1 ≤ t2 − 1)

6 Decomposition and Preprocessing of Ternary Constraint Networks

The last step is to compile logical connectors into TCN constraints. Logical formulas can appear
in arithmetic expressions, e.g. (x ̸= y ∧ x ̸= z) + (y ̸= z) ≥ 1, and integer variables in logical
formulas, e.g. ((x + w) ∨ y) = z. In a Boolean context, we interpret the value of an interval [ℓ, u] to
be true iff 0 /∈ [ℓ, u], and false iff ℓ = u = 0. However, if the constraint is reified, we must map true
to 1 and not to any value. Because we compile ∨ to the min function, and ∧ to the max function, we
must ensure the result of logical connectors lies in the interval [0, 1]. The function booleanize maps
the domain of an expression occurring in a Boolean context to a Boolean variable. As an optimization,
we only map x to a Boolean variable if it is not already a Boolean variable, i.e. its domain is within
the interval [0, 1]. This function is then used to rewrite all logical connectors. Note that we cannot
directly rewrite t1 xor t2 as t1 ̸= t2, otherwise expressions such as [1, 1] xor [2, 2] would be true,
which according to our semantics is not correct as both [1, 1] and [2, 2] should map to true.

booleanize(d, t) =
let d, T, x = tc(d, t) in
if ¬(d(x) ≤ [0, 1]) then

let d, U, b = tc(d, x ̸= 0) in
(d, T ∪ U, b)

else (d, T, x)

tc(d,¬t) = tc(d, t = 0)

tc(d, t1 ⇒ t2) = tc(d,¬t1 ∨ t2)

tc(d, t1 ∧ t2) =
let d, b = extendB(d) in
let d, T, b1 = booleanize(d, t1) in
let d, U, b2 = booleanize(d, t2) in
(d, T ∪ U ∪ {b = min(b1, b2)}, b)

tc(d, t1 ∨ t2) =
let d, b = extendB(d) in
let d, T, b1 = booleanize(d, t1) in
let d, U, b2 = booleanize(d, t2) in
(d, T ∪ U ∪ {b = max(b1, b2)}, b)

tc(d, t1 ⇔ t2) =
let d, b = extendB(d) in
let d, T, b1 = booleanize(d, t1) in
let d, U, b2 = booleanize(d, t2) in
(d, T ∪ U ∪ {b = (b1 = b2)}, b)

tc(d, t1 xor t2) =
let d, T, b1 = booleanize(d, t1) in
let d, U, b2 = booleanize(d, t2) in
let d, V, b = tc(d, b1 ̸= b2) in
(d, T ∪ U ∪ V, b)

We now prove that every constraint network ⟨d, C⟩ is equivalent to its rewriting tcn(d, C), i.e.,
it has exactly the same set of solutions. Because we introduce new variables, we must restrict the
solutions to those defined on the initial variables. Let asn : X → Z be an assignment and Y be a
subset of X , its restriction asn|Y is defined as {y 7→ asn(y) | y ∈ Y }. We extend the restriction to

P. Talbot 7

set of assignments A as follows: A|Y = {asn|Y | asn ∈ A}. We prove the following statements by
structural induction on the formula, showing that at each step the set of solutions is preserved.

▶ Proposition 2 (Soundness and completeness). Let ⟨d, C⟩ be a constraint network defined
over the set of variables X , then sol(d, C) = sol(tcn(d, C))|X .

Proof. The function tcn applies recursively tc on each constraint. Therefore, we first prove the
soundness and completeness of tc. Let d1, T, x = tc(d, t) and Y = X∪{x}, the induction hypothesis
is:

sol(d1, T)|Y = sol(d2, {x = t}) with d2 = d ∪ {x 7→ [−∞,∞]}

If t is a top-level constraint, then tcn sets the domain of x to 1, thus we fall back on the equality
sol(d1, T ∪ {x = 1})|Y = sol(d, {c}) which holds since for any constraint c, we have c ⇔ (x ⇔
c ∧ x = 1). Further, because sol(d, {c1}) ∩ sol(d, {c2}) = sol(d, {c1, c2}), the equality holds for
any constraint network ⟨d, C⟩.

We must prove the induction hypothesis holds for the function tc. When appropriate, we prove
the induction hypothesis by showing a logical equivalence x = t ⇔ x = t′, in which case we
must have, by the induction hypothesis on t and t′, the equality sol(d1, T)|Y = sol(d2, T ′)|Y where
d1, T, x = tc(d, t) and d2, T ′, x = tc(d, t′).

Variable: the domain d1 is unchanged, hence d1 = d2. The set of constraints is empty and x = x

is a tautology. Therefore, sol(d1, T)|Y = sol(d1, {})|Y = sol(d2, {x = x})|Y .
Constant: by definition we have x ∈ dom(d2) and d1(x) = [k, k]. For any constraint network
⟨d, C⟩ with x ∈ dom(d), we have the equality sol(update(d, x, [k, k]), C) = sol(d, C ∪ {x =
k}).
Negation: by logical equivalence x = −t⇔ x = 0− t.
Membership: by logical equivalence of t ∈ S ⇔

∨
v∈S t = v and t = v ∨ t = v + 1 ∨ . . . ∨ t =

v + n⇔ t ≥ v ∧ t ≤ v + n. Furthermore, the update of d(x) with [min S, max S] is implied by
the membership constraint and therefore does not modify the set of solutions.
Absolute value function: by logical equivalence x = abs(t) ⇔ x = max(t,−t). Furthermore,
the update of d(x) with [0,∞] does not modify the set of solutions as it is implied by the tautology
max(t,−t) ≥ 0.
TCN ternary constraint: by logical equivalence x = t1 ⊙ t2 ⇔ x = y ⊙ z ∧ y = t1 ∧ z = t2.
Subtraction: by logical equivalence x = t1 − t2 ⇔ t1 = x + t2.
Inequalities: by logical equivalences x = t1 ≥ t2 ⇔ x = t2 ≤ t1, x = t1 > t2 ⇔ x = t2 ≤
t1 − 1, x = t1 < t2 ⇔ x = t1 ≤ t2 − 1, and x = t1 ̸= t2 ⇔ x = (0⇔ (t1 = t2)).
Logical connectors: we first notice that logical operators are functions □ ∈ Bn → B where n is
the arity of the logical operator □. The conversion from an integer value to a Boolean value is done
implicitly. However, this conversion must be encoded explicitly when decomposing the constraints
because we use arithmetic operators ⊙ ∈ Zn → Z to encode the logical operators, which does
not have the same domains than their logical equivalent □. We restrict the parameter to Boolean
value by converting them in booleanize. The conversion of y to b1 is given by b1 = 0⇔ y = 0
and b1 = 1⇔ y ̸= 0, and similarly z to b2. Then we have the following equivalences:

Logical negation: x = ¬t1 ⇔ (x = (b1 = 0)).
Conjunction: (x = t1 ∧ t2)⇔ (x = max(b1, b2)), and ∀a, b ∈ B, max(a, b) ∈ B.
Disjunction: (x = t1 ∨ t2)⇔ (x = min(b1, b2)), and ∀a, b ∈ B, min(a, b) ∈ B.
Implication: (x = t1 ⇒ t2)⇔ (x = ¬t1 ∨ t2).
Equivalence: (x = t1 ⇔ t2)⇔ (x = (b1 = b2)).
Exclusive disjunction: (x = t1 xor t2)⇔ (x = (b1 ̸= b2)).

◀

8 Decomposition and Preprocessing of Ternary Constraint Networks

▶ Proposition 3 (Uniqueness). Further, we have a bijection between both set of solutions:
|sol(d, C)| = |sol(tcn(d, C))|.

Proof. Let s1, s2 be two solutions in sol(tcn(d, C)) and s be a solution in sol(d, C). Suppose that
s1|X = s and s2|X = s. It means that s1 and s2 differ on the value of at least an auxiliary variable
x, or are the same. We show by induction that the variables in dom(s) fully define the auxiliary
variables, and therefore s1 and s2 must be equal. Our induction hypothesis is that the variable returned
by tc is fully defined.

Variable: no auxiliary variable is created.
Constant: the auxiliary variable is created with a single value.
Ternary constraint x = y ⊙ z: by induction hypothesis, y and z are fully defined. Since all ⊙ are
functions, it is necessary that the auxiliary variable x is fully defined whenever y and z are. Note
that division is fully defined over the intervals as dividing by zero maps to the empty interval.
Subtraction y = x + z: similarly, x must be fully defined whenever y and z are since the inverse
of subtraction is a function (addition).
Logical operators b = b1 □ b2: new Boolean variables are only created for the conjunction,
disjunction and equivalence. By induction hypothesis, b1 and b2 are fully defined. The operators
min, max and = are functions, hence b must be fully defined as well.

◀

4 Preprocessing of Ternary Constraint Network

We follow standard preprocessing techniques that we specialize to ternary constraint networks [10, 9].
The goal of preprocessing is essentially to remove variables and constraints. Before presenting our
preprocessing algorithm, we define a structure to keep track of equivalent variables.

We aim at finding a partition E of X such that each component Y of E represents a set of
equivalent variables. More precisely, all pairs of variables x, y ∈ Y are connected by an equality
constraint x = y. We write [x]E ∈ E the equivalence class of x in E. We suppose variables are
totally ordered (e.g. by an indexing) and we choose min Y to be the representative variable of the
equivalence class Y .

The equivalence classes are discovered by various preprocessing techniques. Initially, we suppose
the variables are all distinct which is given by the partition init(X) ≜ {{x} | x ∈ X}. We add a
variable equality x = y by removing both equivalence classes [x]E and [y]E from E and adding back
their union into the partition.

merge(E, x, y) ≜
let XY = {[x]E} ∪ {[y]E} in (E \XY) ∪ {

⋃
XY }

The interval domain of a variable x ∈ X in an equivalence class Y is the intersection of all variables’
domains in Y , defined as dE(x) ≜

⋂
y∈[x]E

d(y). During preprocessing, we read the domain of a
variable using dE instead of d. In practice, we implement the partition efficiently using a union-find
data structure.

We apply seven preprocessing functions:
Propagation to reduce the domains of the variables.
Algebraic simplification to eliminate constraints for which the solutions can be expressed directly
in the domains of the variables. It also detects equivalence between variables and refine the
partition E.
Common subexpression elimination detects ternary constraints with the same right-hand side. For
instance, consider a = y + z and b = y + z, the procedure eliminates one of the two constraints
and merge the equivalence classes of a and b.

P. Talbot 9

Merge domains of the variables in the equivalence classes. It is especially useful for propagation
which is not aware of the equivalence classes.
Entailed constraint elimination to remove the constraints that are entailed by d. For instance, if
d(x) = [1, 2] and d(y) = [2, 3], then the ternary constraint 1 = (x ≤ y) is always true regardless
of the evolution of d.
Variable renaming to use a unique variable per equivalence class.
Useless variable elimination to remove variables not in the scope of any constraint. We keep the
variables with an empty domain to be able to detect unsatisfiability.

The preprocessing steps are combined in the computation of a greatest fixpoint over the triple
⟨d, C, E⟩. We stop once d and E do not change anymore, and we ignore the modifications on C.
To be able to define a greatest fixpoint, we must define a partial order on partitions. Let E, E′

be two partitions such that
⋃

E =
⋃

E′, then we define the following partial order: E ≤ E′ ⇔
∀Y ∈ E, ∃Z ∈ E′, Y ⊇ Z. The intuition is that we only merge equivalence classes and never
divide an existing one while preprocessing. We ignore the change on C because, by inspecting the
places where we rewrite constraints, the rewritten constraint cannot trigger further rewriting without a
change in d or E. Therefore, if d and E do not change, all constraints that can be rewritten must have
been rewritten already.

The detection of entailed constraints and useless variables, as well as variable renaming, are
extracted outside of the fixpoint loop. Indeed, regardless of the modifications on d and C, an entailed
constraint will stay entailed, and a variable not occurring in the scope of any constraint will remain
useless. Formally, preprocessing is defined by the following two algorithms.

preprocess(d, C) ≜
let E = init(dom(d)) in

(initialize equivalence classes)
let ⟨d, C, E⟩ = gfp⟨d,C,E⟩ preprocess

(see overloaded def. below)
let C = C \ {c ∈ C | γ(d) ⊆ rel(c)} in

(eliminate entailed constraints)
let R = {x 7→ min [x]E | x ∈ dom(X)} in

(create a substitution)
let C = {c[R] | c ∈ C} in

(rename variables by their representative elements)
let d = {x 7→ d(x) | x ∈

⋃
c∈C scp(c) ∨ d(x) = ⊥} in
(eliminate useless variables)

⟨d, C⟩

preprocess(d, C, E) ≜
let d = gfpd pc1 ◦ . . . ◦ pcn

in
(root propagation)

let ⟨d, C, E⟩ = as(d, C, E) in
(algebraic simplification)

let ⟨d, C, E⟩ = gfp⟨d,C,E⟩ icse in
(common subexpression elimination)

let d = {x 7→ dom(E, d, x) | x ∈ X} in
(merge domains of equivalent variables)

(⟨d, C⟩, E)

10 Decomposition and Preprocessing of Ternary Constraint Networks

Note that in practice, we must save the partition E and eliminated variables in order to print the
solutions with the original variables of the model, but this poses no particular challenge.

We give an example of the algorithm on the constraint network ⟨d, {x = y + z, w = y +
z, x = (y = z)}⟩ with d(x) = [0, 1], d(w) = [1, 2] and all other variables with domain [−∞,∞].
Propagation is unable to remove any value from the domains and as does not detect any equality
constraint since x could be equal to 0. Then, icse detects the equality x = w, modifies the partition
to {{x, w}, {y}, {z}} and removes the constraint x = (y = z). The propagation is still inefficient,
but this time as is able to detect the equality y = z since dE(x) = d(x) ∩ d(w) = [1, 1], and the
partition is updated to {{x, w}, {y, z}}. At the next iteration, as rewrites the constraint w = y + z

into w = y ∗ 2. It enables the propagation step to reduce the domain of y to ⊥, effectively detecting
the problem unsatisfiable. At that point, the constraint network is ⟨d, {w = y ∗ 2}⟩ and the fixpoint of
preprocess is reached. The entailment checking step removes the constraint w = y ∗ 2 as γ(d) = {}.
In this situation, the problem has been completely solved, and detected unsatisfiable, by preprocessing.

Common Subexpression Elimination

We eliminate the TCN subexpressions that are identical by iterating over each pair of constraints in C.

icse(d, {}, E) = ⟨d, {}, E⟩
(base cases |C| ≤ 1)

icse(d, {c}, E) = ⟨d, {c}, E⟩

icse(d, {x1 = (y1 ⊙1 z1), c2, . . . , cn}, E) =
let ⟨d, C, E⟩ = icse(d, {c2, . . . , cn}, E) in
if ∃(xi = (yi ⊙i zi)) ∈ C, ⊙1 = ⊙i

∧((y1 = yi ∧ z1 = zi) ∨ (⊙1 ∈ C ∧ y1 = zi ∧ z1 = yi))
then

(detecting subexpression equality)
⟨d, C, merge(E, x1, xi)⟩

(c1 is removed and an equality is added)
else
⟨d, C ∪ {x1 = (y1 ⊙1 z1)}, E⟩

Note that we implement this algorithm efficiently in O(|C|) by using a hash map between y ⊙ z and
x for each constraint x = (y ⊙ z). To account for commutativity, the hashing function must give
the same result for y ⊙ z and z ⊙ y, which can be done by simply multiplying the indexes of the
variables and the operator. The equality function of the hash map must compare the elements taking
into account commutativity as shown in the algorithm above.

Algebraic Simplification

We present a few rewriting rules that are not taken into account when performing interval propagation,
especially because propagation does not deal well with multiple occurrences of the same variable in a
constraint. The function as is essentially a pattern matching algorithm over the constraints. We write
C = {+, ∗, min, max, =} the set of commutative operators. To simplify the notation, we rewrite

P. Talbot 11

each constraint in a normal form as follows:

nf (E, d, x = y ⊙ z) =
let y, z = L ⊙ ∈ C ∧ y ≤ z (y, z) (z, y) M in

(normalize commutative operators)
let y, z = L ⊙ ∈ C ∧ dE(y) = [k, k] (z, y) (y, z) M in

(constant on the right of ⊙)
let x, y, z = min [x]E , min [y]E , min [z]E in

(variable substitution)
(x = y ⊙ z)

Furthermore, an integer k in bold font denotes a variable x such that d(x) = [k, k].

12 Decomposition and Preprocessing of Ternary Constraint Networks

as(d, {}, E) = ⟨d, {}, E⟩

as(d, {c1, c2, . . . , cn}, E) =
let d, 2 = extendco(d, 2) in
let d, C, E = as(d, {c2, . . . , cn}) in
match nf (c1) with
| x = x + y → ⟨update(d, y, [0, 0]), C, E⟩
| x = y + 0→ ⟨d, C, merge(E, x, y)⟩
| x = y + y → ⟨d, C ∪ {x = y ∗ 2}, E⟩
| x = x ∗ k→

L k = 1 ⟨d, C, E⟩ ⟨update(d, x, [0, 0]), C, E⟩ M
| k = x ∗ x→

L ∃n ∈ N, n ∗ n = k

⟨update(d, x, [−
√

k,
√

k]), C ∪ {c1}, E⟩
⟨update(d, x,⊥), C, E⟩ M

| x = y ∗ 1→ ⟨d, C, merge(E, x, y)⟩
| x = x ∗ x→ ⟨update(d, x, [0, 1]), C, E⟩
| x = 1/x→ ⟨update(d, x, [−1, 1]), C ∪ {c1}, E⟩
| x = 0/x→ ⟨update(d, x,⊥), C, E⟩
| k = x/x→

L k = 1
⟨d, C ∪ {c1}, E⟩
⟨update(d, x,⊥), C, E⟩ M

| x = y/1→ ⟨d, C, merge(E, x, y)⟩
| x = x/x→ ⟨update(d, x, [1, 1]), C, E⟩
| x = x mod x→ ⟨update(d, x, [0, 0]), C, E⟩
| x = x mod k→

⟨update(d, x, [0, abs(k)− 1]), C, E⟩
| x = k mod x→ ⟨update(d, x,⊥), C, E⟩
| 0 = x mod x→ ⟨d, C, E⟩
| x = min(y, y)→ ⟨d, C, merge(E, x, y)⟩
| x = max(y, y)→ ⟨d, C, merge(E, x, y)⟩
| x = min(x, y)→ ⟨d, C ∪ {1 = (x ≤ y)}, E⟩
| x = max(x, y)→ ⟨d, C ∪ {1 = (y ≤ x)}, E⟩
| 1 = (x = y)→ ⟨d, C, merge(E, x, y)⟩
| x = (y = y)→ ⟨update(d, x, [1, 1]), C, E⟩
| x = (x = k)→ ⟨L k = 0 update(d, x,⊥)

k = 1 update(d, x, [1, 1])
update(d, x, [0, 0]) M, C, E⟩

| x = (y ≤ y)→ ⟨update(d, x, [1, 1]), C, E⟩
| x = (x ≤ k)→ ⟨L k = 0 update(d, x,⊥)

k > 0 update(d, x, [1, 1])
update(d, x, [0, 0]) M, C, E⟩

| x = (k ≤ x)→ ⟨L k = 1 d

k < 1 update(d, x, [1, 1])
update(d, x, [0, 0]) M, C, E⟩

P. Talbot 13

Variables Constraints
average median stddev max average median stddev max

FlatZinc 9.42x 1.86x 18.63x 111.62x 24.94x 2.95x 67.91x 486.87x
TCN 53.61x 7.97x 151.61x 1133.22x 76.68x 6.21x 265.88x 1837.19x
Preprocessed 22.06x 4.76x 50.48x 344.62x 36.39x 4.33x 115.18x 746.09x

Table 1 Increase in size of constraint networks relatively to Choco constraint networks over 89 instances.

There are a few rules we left out because they are already implicitly encoded by constraint
propagation over intervals. It is the case of the absorbing element 0 for multiplication and division.
Note that there is no need to evaluate constants as this is already taken into account by propagation
and the removal of entailed constraints.

5 Analysis of Ternary Constraint Networks

As we do not support any global constraint, the MiniZinc to FlatZinc conversion is already quite
costly. Table 1 shows the average, median, standard deviation and maximum increase in the numbers
of variables and constraints for fully decomposed MiniZinc model (without global constraints), after
decomposition into TCN (Section 3) and after preprocessing (Section 4). On 63/89 instances, the
FlatZinc decomposition is less than an order of magnitude larger than the Choco constraint network
in both the number of variables and constraints. After applying the TCN decomposition, we further
increase by 5 times the number of variables and 3 times the number of constraints on average.
Fortunately, the preprocessing step reduces this increase to 2.5 times for variables and 1.5 times
for constraints on average, which is a reasonable increase considering the constraint network only
contains ternary constraints. For a more precise overview, we provide a scatter plot of the variables
and constraints increases for all instances in Figure 2. The average preprocessing time is 24.22s with
a standard deviation of 96.91s. The median time is 0.91s and only 11 instances take more than 10
seconds to be preprocessed.

On Figure 1, we analyze the usage of the operators across instances. Clearly, thread divergence
is not be the main concern anymore since the instances are not using a wide variety of operators.
In particular, there is no instance with modulo and division operations (or they are simplified after
preprocessing). Because of the preprocessing, all non-reified equality constraints 1 = (x = y) are
deleted. The constraint x = y ≤ z only exists in a reified context and 0 = y ≤ z (modelling
y > z) and 1 = y ≤ z have completely disappeared. It is a consequence of the FlatZinc and TCN
decomposition, y ≤ z is rewritten y−z ≤ 0 by the FlatZinc decomposition, which is further rewritten
y = x + z ∧ x ≤ 0 leading to ≤ and > being directly managed in the domain of the variables. The
most used TNF constraints are addition, maximum which is used to encode disjunction, and reified
equality. Interestingly, although present in 5 problem classes, the decomposition of all-different into
O(n2) constraints of the form 0 = (x = y) does not seem to be a bottleneck.

References

1 Krzysztof R. Apt. The essence of constraint propagation. Theoretical computer science, 221(1-2):179–210,
1999. URL: http://www.sciencedirect.com/science/article/pii/S0304397599000328, doi:10.1016/
S0304-3975(99)00032-8.

2 Frédéric Benhamou, Frédéric Goualard, Laurent Granvilliers, and Jean-François Puget. Revising hull
and box consistency. In Proceedings of the 1999 International Conference on Logic Programming, page
230–244, USA, 1999. Massachusetts Institute of Technology.

http://www.sciencedirect.com/science/article/pii/S0304397599000328
https://doi.org/10.1016/S0304-3975(99)00032-8
https://doi.org/10.1016/S0304-3975(99)00032-8

14 Decomposition and Preprocessing of Ternary Constraint Networks

x
=

y
+

z

x
=

m
ax

(y
,z

)

x
=

(y
=

z)

x
=

y
z

x
=

m
in

(y
,z

)

x
=

y
*z

0=
(y

=
z)

Operators

accap

aircraft-disassembly

cable-tree-wiring

community-detection

compression

concert-hall-cap

fox-geese-corn

graph-clear

hoist-benchmark

monitor-placement-1id

neighbours

network_50_cstr

peacable_queens

portal

tiny-cvrp

train-scheduling

triangular

word-equations

Normalized Operator Usage Across Instances

0

20

40

60

80

100

Figure 1 Heatmap of the operators used in preprocessed ternary constraint networks over 89 instances
grouped by problem classes.

P. Talbot 15

100 101 102

Variables (log scale)

100

101

102

103

Co
ns

tra
in

ts
 (l

og
 sc

al
e)

MiniZinc instances

Figure 2 Increase in size of preprocessed ternary constraint networks relatively to Choco constraint networks
(95 instances).

16 Decomposition and Preprocessing of Ternary Constraint Networks

3 Frédéric Benhamou and William J. Older. Applying interval arithmetic to real, integer, and boolean
constraints. The Journal of Logic Programming, 32(1):1 – 24, 1997. URL: http://www.sciencedirect.com/
science/article/pii/S0743106696001422, doi:10.1016/S0743-1066(96)00142-2.

4 Mats Carlsson, Greger Ottosson, and Björn Carlson. An open-ended finite domain constraint solver.
Programming Languages: Implementations, Logics, and Programs, 1997.

5 Philippe Codognet and Daniel Diaz. Compiling constraints in clp(fd). The Journal of Logic Programming,
27(3):185 – 226, 1996. URL: http://www.sciencedirect.com/science/article/pii/0743106695001212,
doi:10.1016/0743-1066(95)00121-2.

6 Marco Correia and Pedro Barahona. View-based propagation of decomposable constraints. Constraints,
18(4):579–608, October 2013. URL: http://link.springer.com/10.1007/s10601-013-9140-8, doi:10.
1007/s10601-013-9140-8.

7 Christophe Lecoutre. Constraint networks: techniques and algorithms. ISTE/John Wiley, Hoboken, NJ,
2009.

8 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and Guido
Tack. MiniZinc: Towards a standard CP modelling language. In Principles and Practice of Constraint
Programming—CP 2007, pages 529–543. Springer, 2007. URL: http://link.springer.com/chapter/10.1007/
978-3-540-74970-7_38.

9 Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Patrick Spracklen.
Automatically improving constraint models in Savile Row. Artificial Intelligence, 251:35–61, Octo-
ber 2017. URL: https://linkinghub.elsevier.com/retrieve/pii/S0004370217300747, doi:10.1016/j.
artint.2017.07.001.

10 Andrea Rendl. Effective compilation of constraint models. PhD Thesis, University of St Andrews, 2010.
11 Christian Schulte and Peter J. Stuckey. Efficient Constraint Propagation Engines. ACM Trans. Program.

Lang. Syst., 31(1):2:1–2:43, December 2008. URL: http://doi.acm.org/10.1145/1452044.1452046, doi:
10.1145/1452044.1452046.

12 Christian Schulte and Guido Tack. View-based propagator derivation. Constraints, 18(1):75–
107, January 2013. URL: http://link.springer.com/10.1007/s10601-012-9133-z, doi:10.1007/
s10601-012-9133-z.

13 Peter J. Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien Fischer. The MiniZinc challenge
2008–2013. AI Magazine, 35(2):55–60, 2014. URL: https://vvvvw.aaai.org/ojs/index.php/aimagazine/
article/view/2539.

14 Guido Tack. Constraint Propagation – Models, Techniques, Implementation. PhD thesis, Saarland
University, 2009.

15 Pierre Talbot, Frédéric Pinel, and Pascal Bouvry. A Variant of Concurrent Constraint Programming on
GPU. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 3830–3839,
Jun. 2022. doi:10.1609/aaai.v36i4.20298.

16 Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.
17 Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, implementation, and evaluation of

the constraint language cc(FD). The Journal of Logic Programming, 37(1–3):139–164, 1998. URL:
http://www.sciencedirect.com/science/article/pii/S0743106698100067, doi:http://dx.doi.org/
10.1016/S0743-1066(98)10006-7.

http://www.sciencedirect.com/science/article/pii/S0743106696001422
http://www.sciencedirect.com/science/article/pii/S0743106696001422
https://doi.org/10.1016/S0743-1066(96)00142-2
http://www.sciencedirect.com/science/article/pii/0743106695001212
https://doi.org/10.1016/0743-1066(95)00121-2
http://link.springer.com/10.1007/s10601-013-9140-8
https://doi.org/10.1007/s10601-013-9140-8
https://doi.org/10.1007/s10601-013-9140-8
http://link.springer.com/chapter/10.1007/978-3-540-74970-7_38
http://link.springer.com/chapter/10.1007/978-3-540-74970-7_38
https://linkinghub.elsevier.com/retrieve/pii/S0004370217300747
https://doi.org/10.1016/j.artint.2017.07.001
https://doi.org/10.1016/j.artint.2017.07.001
http://doi.acm.org/10.1145/1452044.1452046
https://doi.org/10.1145/1452044.1452046
https://doi.org/10.1145/1452044.1452046
http://link.springer.com/10.1007/s10601-012-9133-z
https://doi.org/10.1007/s10601-012-9133-z
https://doi.org/10.1007/s10601-012-9133-z
https://vvvvw.aaai.org/ojs/index.php/aimagazine/article/view/2539
https://vvvvw.aaai.org/ojs/index.php/aimagazine/article/view/2539
https://doi.org/10.1609/aaai.v36i4.20298
http://www.sciencedirect.com/science/article/pii/S0743106698100067
https://doi.org/http://dx.doi.org/10.1016/S0743-1066(98)10006-7
https://doi.org/http://dx.doi.org/10.1016/S0743-1066(98)10006-7

	1 Introduction
	2 Constraint Programming
	3 Ternary Constraint Network
	4 Preprocessing of Ternary Constraint Network
	5 Analysis of Ternary Constraint Networks

