My Research Journey in 2024 and Vision for 2025

Thibault Falque Special meeting – 15th January 2025

University of Luxembourg

Contents

- 1. Summary of the Research Project
- 2. Achievements in 2024
- 3. Key Goals for 2025

Summary of the Research

Project

Achievements in 2024

PhD Contributions

- Journal Publication:
 - Machine learning for predicting off-block delays in Data & Knowledge Engineering.
- Conferences:
 - IAAI24, Vancouver: Check-in Desk Scheduling Optimization.
 - ICAART24, Rome: Parking Scheduling Optimization.

Conferences and Events

- Partipated to Abstract Week
- Participated in:
 - JFPC, Lens.
 - NVIDIA Hackathon, Virtual.

Supervision and Teaching

- Supervised two students:
 - GPU algorithms for propagators.
 - Development of Metrics tools.
- Supervised a bachelor project:
 - Chevrex: A wearable health tracking device.
- Teaching a course on the AllDifferent constraint.

Octagon Abstract Domain

Objective:

Explore and improve the octagon abstract domain.

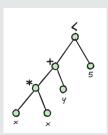
Definition:

An octagon constraint is of the form:

$$\pm x_i - \pm x_j \le c \tag{1}$$

Status:

- Existing implementation in lala-module using difference bound matrices.
- Next Steps:
 - Refactoring and improving the implementation


Ternary Normal Form

Problem:

Dynamic memory overhead due to deep constraint trees.

Example:

$$x * x + y < 5$$

Solution:

Decompose constraints into fixed-depth propagators.

Ternary Normal Form

Definition:

- TNF Propagators: x = y < op > z, where $op \in \{+, -, *, /, min, max, \le, =\}$.
- Example:

$$t_1 = x * x,$$

 $t_2 = t_1 + y,$
 $ONE = (t_2 \le z)$

Ternary Normal Form

Problem	Data	#Vars	#Vars (TNF)	#Constraints	#Constraints (TNF)
team-assignment	data3_5_31	15932.0	35445.0 (x2.22)	25684.0	45197.0 (×1.76)
generalized-peacable-queens	n8_q3	2940.0	20186.0 (x6.87)	8273.0	25519.0 (x3.08)
spot5	404	1112.0	22053.0 (x19.83)	8124.0	29065.0 (x3.58)
nfc	24_4_2	169.0	527.0 (x3.12)	222.0	580.0 (x2.61)
blocks-world	16-4-5	49447.0	109068.0 (x2.21)	73421.0	133042.0 (x1.81)
triangular	n39	3863.0	207966.0 (x53.84)	105136.0	309239.0 (x2.94)
accap	accap_a4_f30_t15	530.0	2319.0 (x4.38)	993.0	2782.0 (x2.80)
tower	100_100_20_100-04	12547.0	38559.0 (x3.07)	23257.0	49269.0 (x2.12)
roster-sickness	small-4	4980.0	7978.0 (x1.60)	6067.0	9116.0 (x1.50)
accap	accap_a40_f800_t180	28494.0	147451.0 (x5.17)	58616.0	177573.0 (x3.03)
diameterc-mst	c_v20_a190_d4	3045.0	7336.0 (x2.41)	6962.0	11253.0 (x1.62)
triangular	n10	267.0	1370.0 (x5.13)	765.0	1868.0 (x2.44)
wordpress	Wordpress7_Offers500	667.0	92695.0 (x138.97)	30893.0	122921.0 (x3.98)
roster-sickness	large-2	22952.0	29840.0 (x1.30)	25693.0	32653.0 (x1.27)
stripboard	common-emitter-simple	2123.0	14581.0 (x6.87)	4563.0	17093.0 (x3.75)
gfd-schedule	n55f2d50m30k3_10124	32604.0	67749.0 (×2.08)	54575.0	89720.0 (×1.64)

Source: https://lattice-land.github.io/10-turbo.html

Lattice Intermediate Representation (LIR)

The Lattice Intermediate Representation is a very low-level representation of the propagator of a constraint.

Logical Extension of the Ternary Normal Form

 Objective: Convert all propagators of all constraints into guarded commands using a compiler.

Definition of a Guarded Command

A guarded command is a tuple:

$$(b, OP, x, y, r, seq)$$
 (2)

where: - b, x, y, r: Indexes into the integer array data. - OP: One of the operators:

{ADD, SUB, MUL, TDIV, CDIV, EDIV, MIN, MAX, NEG, AND, OR, EQ, NEQ, EZTE, NZIN}
(3)

- seq: A Boolean indicating whether r is only written by one thread.

Next Steps

Interpret the set of guarded commands in parallel until the fixpoint is reached.

Approximation

Goal:

Enhance solving of CSPs and COPs through relaxation techniques.

Steps:

- 1. Ignore some constraints to simplify the problem.
- 2. Solve the simplified problem.
- 3. Restore ignored constraints and use the solution to refine the search.
- 4. Repeat until the subproblem becomes solvable.

Key Goals for 2025

Key Goals for 2025

- Research:
 - Submit the *Approximation* paper for IJCAI (Deadline: 24th January).
 - Resume work on Lattice Intermediate Representation (LIR).
 - Submit a paper to JFPC (Deadline: 7th March).
- Career:
 - Start searching for new professional opportunities.

My Research Journey in 2024 and Vision for 2025

Thibault Falque Special meeting – 15th January 2025

University of Luxembourg

Bibliography