Parallel Computing

— page 1/4

UNIVERSITE DU
LUXEMBOURG

Memory Consistency

Parallel Computing

% Study memory memory consistencies and litmus tests.

% Think in groups of 2 or 3 students.

1 Litmus Tests

‘We have seen 5 litmus tests that are summarized here below.

1.1 Message Passing (MP)

Can this programsee r1 = 1, r2 = 07

// Thread 1 // Thread 2
x =1 rl =y
y =1 r2 = x

1.2 Store Buffering (SB)

Can this programsee r1 = 0, r2 = 07?

// Thread 1 // Thread 2
x =1 y =1
rl =y r2 = x

1.3 Load Buffering (LB)

Can this programsee r1 = 1, r2 = 17
// Thread 1 // Thread 2

rl = x r2 =y

y =1 x =1

1.4 Independent Read of Independent Write (IRIW)

Can this programseerl = 1, r2 = 0, r3 =1, rd4d = 07

// Thread 1 // Thread 2 // Thread 3 //
x =1 y =1 rl = x r3
r2 =y r4

University of Luxembourg, Master in High Performance Computing/PC

Thread 4

y
b e



Parallel Computing — page 2/4

1.5 Coherence

Can this programseerl = 1, r2 = 2, r3 = 2, rd4d = 1?

// Thread 1 // Thread 2 // Thread 3 // Thread 4
x =1 X = 2 rl = x r3 = x
r2 = x rd = x

Exercise 1 — Abstraction of Hardware Architectures (recall)
Describe the x86 total store order (TSO) architecture and the ArmV7/Power architecture. Help yourself with a diagram.

Exercise 2 — Litmus Tests
Fill in the following table (put an “X” if the litmus tests fail).

| MP | SB | LB | IRIW | Coherence

SC hardware
x86-TSO
ArmV7/relaxed mem.

Any lang. with ordinary variables

C++ with SC atomics

Exercise 3 — Other litmus test (S)
Consider the following litmus test:

// Thread 1 // Thread 2
x = 2 rl =y
y =1 x =1

Check on which memory consistency models we can observe x = 2 Arl = 1.

University of Luxembourg, Master in High Performance Computing/PC



Parallel Computing

— page 3/4

Exercise 4 — New Litmus Test
Consider the following variant of IRIW (only changing the order of read for thread 4):

Can this programseerl = 1, r2 = 0, r3 =1, r4 = 0?
(Can Threads 3 and 4 see x and y change in different orders?)

// Thread 1 // Thread 2 // Thread 3 // Thread 4
x =1 y =1 rl = x r3 = x
r2 =y rd =y

Can this litmus test still distinguishes between x86-TSO and relaxed consistency (ARM)? Justify your answer.

Exercise 5 — New Architecture

Modify the x86-TSO architecture to have a read buffers instead of a write buffers. Analyze this read buffers architecture

on the litmus tests.

Exercise 6 — SB

Do we need to add two MFENCE instructions on x86-TSO hardware to fix the store buffering litmus test? Would the

following code fix it?

// Thread 1 // Thread 2
x =1 y =1
MFENCE

rl =y r2 = x

Justify your answer.

University of Luxembourg, Master in High Performance Computing/PC



Parallel Computing — page 4/4

Exercise 7 — Compare and swap
The compare-and-swap operation for minimum can be implemented as follows:

void atomic_min(std::atomic<int>& a, int b) {
int old = a.load();
while (old > b && !a.compare_exchange_weak (old, b)) {
// Note that old will be reload if the compare_exchange could not work.
}
}

Implement a general template <class F> void atomic_op (std::atomic<int>& a, int b, F f).

University of Luxembourg, Master in High Performance Computing/PC



	Litmus Tests
	Message Passing (MP)
	Store Buffering (SB)
	Load Buffering (LB)
	Independent Read of Independent Write (IRIW)
	Coherence


