
Parallel Computing – page 1/4

Memory Consistency
Parallel Computing

Goals

✯ Study memory memory consistencies and litmus tests.

✯ Think in groups of 2 or 3 students.

1 Litmus Tests

We have seen 5 litmus tests that are summarized here below.

1.1 Message Passing (MP)

Can this program see r1 = 1, r2 = 0?

// Thread 1 // Thread 2
x = 1 r1 = y
y = 1 r2 = x

1.2 Store Buffering (SB)

Can this program see r1 = 0, r2 = 0?

// Thread 1 // Thread 2
x = 1 y = 1
r1 = y r2 = x

1.3 Load Buffering (LB)

Can this program see r1 = 1, r2 = 1?

// Thread 1 // Thread 2
r1 = x r2 = y
y = 1 x = 1

1.4 Independent Read of Independent Write (IRIW)

Can this program see r1 = 1, r2 = 0, r3 = 1, r4 = 0?

// Thread 1 // Thread 2 // Thread 3 // Thread 4
x = 1 y = 1 r1 = x r3 = y

r2 = y r4 = x

University of Luxembourg, Master in High Performance Computing/PC



Parallel Computing – page 2/4

1.5 Coherence

Can this program see r1 = 1, r2 = 2, r3 = 2, r4 = 1?

// Thread 1 // Thread 2 // Thread 3 // Thread 4
x = 1 x = 2 r1 = x r3 = x

r2 = x r4 = x

Exercise 1 – Abstraction of Hardware Architectures (recall)
Describe the x86 total store order (TSO) architecture and the ArmV7/Power architecture. Help yourself with a diagram.

Exercise 2 – Litmus Tests
Fill in the following table (put an “X” if the litmus tests fail).

MP SB LB IRIW Coherence

SC hardware
x86-TSO
ArmV7/relaxed mem.
Any lang. with ordinary variables

C++ with SC atomics

Exercise 3 – Other litmus test (S)
Consider the following litmus test:

// Thread 1 // Thread 2
x = 2 r1 = y
y = 1 x = 1

Check on which memory consistency models we can observe x = 2 ∧ r1 = 1.

University of Luxembourg, Master in High Performance Computing/PC



Parallel Computing – page 3/4

Exercise 4 – New Litmus Test
Consider the following variant of IRIW (only changing the order of read for thread 4):

Can this program see r1 = 1, r2 = 0, r3 = 1, r4 = 0?
(Can Threads 3 and 4 see x and y change in different orders?)

// Thread 1 // Thread 2 // Thread 3 // Thread 4
x = 1 y = 1 r1 = x r3 = x

r2 = y r4 = y

Can this litmus test still distinguishes between x86-TSO and relaxed consistency (ARM)? Justify your answer.

Exercise 5 – New Architecture
Modify the x86-TSO architecture to have a read buffers instead of a write buffers. Analyze this read buffers architecture
on the litmus tests.

Exercise 6 – SB
Do we need to add two MFENCE instructions on x86-TSO hardware to fix the store buffering litmus test? Would the
following code fix it?

// Thread 1 // Thread 2
x = 1 y = 1
MFENCE
r1 = y r2 = x

Justify your answer.

University of Luxembourg, Master in High Performance Computing/PC



Parallel Computing – page 4/4

Exercise 7 – Compare and swap
The compare-and-swap operation for minimum can be implemented as follows:

void atomic_min(std::atomic<int>& a, int b) {
int old = a.load();
while (old > b && !a.compare_exchange_weak(old, b)) {

// Note that old will be reload if the compare exchange could not work.
}

}

Implement a general template <class F> void atomic_op(std::atomic<int>& a, int b, F f).

University of Luxembourg, Master in High Performance Computing/PC


	Litmus Tests
	Message Passing (MP)
	Store Buffering (SB)
	Load Buffering (LB)
	Independent Read of Independent Write (IRIW)
	Coherence


