Parallel Computing — page 1/4

UNIVERSITE DU
LUXEMBOURG

Readers-Writers Problem

Parallel Computing

% Study an instance of the readers-writers problem.
J% Practice the manipulation of semaphores and mutexes.

% Think in groups of 2 or 3 students.

1 Readers-Writers Problem

To explain the problem, here an extract of Wikipedia:

In computer science, the readers—writers problems are examples of a common computing problem in con-
currency. There are at least three variations of the problems, which deal with situations in which many
concurrent threads of execution try to access the same shared resource at one time.

Some threads may read and some may write, with the constraint that no thread may access the shared
resource for either reading or writing while another thread is in the act of writing to it. (In particular, we
want to prevent more than one thread modifying the shared resource simultaneously and allow for two or
more readers to access the shared resource at the same time). A readers—writer lock is a data structure that
solves one or more of the readers—writers problems.

For instance, you can think about a web-page. Many people want to read the page, and from times to times, we want to
update the page while avoiding someone to read a page being partially updated.
Your goal is to implement the missing functions read and write of the following class:

template <class T>
class RWResource {
T data;
// ... more attributes

public:
template <class F>
void read(F f) const {
// ... some code
f(data); // notethat here “data” is const
// ... some code

template <class F>
void write (F f) {
// ... some code

University of Luxembourg, Master in High Performance Computing/PC



Parallel Computing — page 2/4

f (data); // note that here “data” is not const
// ... some code
}
bi

* First, you should try to implement a version that is correct, that is, it preserves the invariants that no write can
occur concurrently to a read, while multiple reads are allowed.

* Can your solution lead to starvation of the readers or the writers?

* If yes, propose an alternative.

2 Extract of Semaphore API

namespace std {
template<ptrdiff_t LeastMaxValue = /ximplementation—defined +/>
class counting_semaphore {
public:
constexpr explicit counting_semaphore (ptrdiff_t desired);
void release (ptrdiff_t update = 1);
void acquire();
bool try_acquire () noexcept;
}i

3 Producer-consumer code (from the video)

constexpr int maxsem = std::numeric_limits<int>::max();

template <class T>
class ConcurrentQueue {
std: :queue<T> queue;
std::mutex mutex_queue;
std: :counting_semaphore<maxsem> is_empty;

public:
ConcurrentQueue () : is_empty(0) {}

void push(T&& x) {
mutex_queue.lock () ;
queue.push (std: :move (x)) ;
is_empty.release();
mutex_queue.unlock () ;

T pop () {
is_empty.acquire();
mutex_queue.lock () ;
T val (std::move (queue.back()));
queue.pop () ;
mutex_queue.unlock () ;
return std::move (val);

}i

University of Luxembourg, Master in High Performance Computing/PC



Parallel Computing — page 3/4

4 Extract of Mutex API

namespace std {
class mutex {
public:
constexpr mutex () noexcept;

void lock();

bool try_lock();

void unlock () ;
}i

5 Extract of condition variable API

namespace std {
class condition_variable {

public:
condition_variable () ;
void notify_one () noexcept;
void notify_all() noexcept;

void wait (unique_lock<mutex>& lock);

template<class Pred>
void wait (unique_lock<mutex>& lock, Pred pred);

}i

Note that wait can wake up even if no notify occured. When waking up, you still need to check a Boolean flag to
make sure it is a “real wake-up”. You can use the overload of wait to achieve that, as shown in the following examples:

6 Example of condition variable

#include <condition_variable>
#include <iostream>

#include <mutex>

#include <string>

#include <thread>

// Note: don’t use global variables in your code, thanks.
std::mutex m;

std::condition_variable cv;
std::string data;

bool ready = false;

bool processed = false;

void worker_thread()

{
// wait until main() sends data
std::unique_lock 1k (m);
cv.wait (1k, []1{ return ready; 1});

// after the wait, we own the lock

std::cout << "Worker thread is processing data\n";
data += " after processing";

University of Luxembourg, Master in High Performance Computing/PC



Parallel Computing

— page 4/4

int

// send data back to main()
processed = true;

std::cout << "Worker thread signals data processing completed\n";

// manual unlocking is done before notifying, to avoid waking up
// the waiting thread only to block again (see notify_one for details)
lk.unlock () ;

cv.notify_one();

main ()

std: :thread worker (worker_thread);
data = "Example data";
// send data to the worker thread
{
std::lock_guard 1k (m);
ready = true;
std::cout << "main() signals data ready for processing\n";
}
cv.notify_one();
// wait for the worker
{
std::unique_lock 1k (m);
cv.wait (1k, []{ return processed; });
}
std::cout << "Back in main (), data = " << data << ’'\n’;
worker.join () ;

University of Luxembourg, Master in High Performance Computing/PC



	Readers-Writers Problem
	Extract of Semaphore API
	Producer-consumer code (from the video)
	Extract of Mutex API
	Extract of condition variable API
	Example of condition variable

