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Intelligent systems: Constraint programming

I Format: lecture + lab combined
(Alternating lecture and exercises, . . . ).

I Webpage of this lecture: hyc.io/teaching/is1.html

http://hyc.io/teaching/is1.html
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Paradigms

Programming paradigms

I You are used to the imperative paradigm (C, C++, Java, . . . ),
I maybe object-oriented (C++, Java, . . . ),
I and probably not functional (OCaml, Haskell, Scala, . . . )?

These are only a few of the available paradigms!
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The chart classifies programming paradigms according to their kernel
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encoded with only local transformations.  Two languages that implement

programmer, because they make different choices about what
programming techniques and styles to facilitate.
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languages (the small core language in which all the paradigm’s

without interference from other paradigms.  It does not mean that there
is a perfect fit between the language and the paradigm.  It is not enough
that libraries have been written in the language to support the paradigm.
The language’s kernel language should support the paradigm.  When
there is a family of related languages, usually only one member of the 
family is mentioned to avoid clutter.  The absence of a language does
not imply any kind of value judgment.

When a language is mentioned under a paradigm, it means that part of
the language is intended (by its designers) to support the paradigm

Typing is not completely orthogonal: it has some effect on expressiveness. 
Axes orthogonal to this chart are typing, aspects, and domain−specificity. 
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Constraint programming

Today, we learn about a new programming paradigm:
Constraint programming.

I Declarative paradigm,
I Nicknamed "holy grail of computing": we declare our problem and let

the computer solve it for us.



Nurse Scheduling Problem

N nurses work M days, find a planning such that:
I Each nurse does at maximum one shift per day (day shift, or evening

shift, or late night shift).
I Nurses must not work two nights in a row.
I Nurses must not work the day after a night shift.
I . . .



Interactive Soccer Queries

Following the score system of FIFA, answer these questions:
I Can a team still be the champion?
I Is a team is sure / has chance to qualify?
I ...

CP and MIP approaches for soccer analysis, Duque et al., 2019



Harmonization problem

Given a series of N chords, find a permutation to maximize the common
notes between every two successive chords.

Musical harmonization with constraints: A survey, Pachet and Roy, 2001



Intuitions

These problems are highly combinatorial and generally NP-complete.
Without optimisations, these problems are almost impossible to solve.

How does it work?
We declare a set of variables, and add constraints (or mathematical
relations) on these variables. A solution is an assignment of values to
variables, such that all constraints are satisfied.

x ∈ {0, 1, 2}, y ∈ {1, 2}, x < y

One possible solution is x = 1, y = 2.



First example: Sudoku

Can you design an algorithm that find the missing numbers? Is it hard?



Mathematical representation

Let a matrix M of size 9× 9 where 1 ≤ Ml ,c ≤ 9 and l is the line and c
the column, we have:
I Different lines: ∀l , c, c ′, Ml ,c 6= Ml ,c′ such that c 6= c ′.
I Different columns: ∀l , l ′, c, Ml ,c 6= Ml ′,c such that l 6= l ′.
I Different sub-squares:
∀l , c ∈ {1, 4, 7}, ∀sl , sc, sl ′, sc ′ ∈ Z3, Ml+sl ,c+sc 6= Ml+sl ′,c+sc′ such
that sl 6= sl ′ ∧ sc 6= sc ′.



MiniZinc representation

It is very close from the mathematical representation.
To solve: solve satisfy;



Input and Output

Input: A Sudoku grid where missing digits are represented by _.
Output: The completed grid.

Live demo.
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What tools to solve a constraint problem?

I Librairies : GeCode (C++), Choco (Java), . . .
I Languages : Prolog, MiniZinc, . . .

Why MiniZinc?

I Easy: Syntax similar to mathematical representation.
I Modular: Allow to solve the model on different solvers (GeCode,

Choco, ...).
I Even more modular: Allow to solve the model using different

"sub-paradigms" (CP, ILP, MIP, . . . ). With the same model!



Declare variables

int: n = 9; % Parameter
var 1..9: y; % Variable

Two kinds of variables
I Parameters: The variable n is a parameter fixed before execution. It

can only take one value. For instance, the size of the matrix in the
Sudoku.

I Decision variables: The variable y takes a value between 1 and 9 after
the execution. For instance, it is a cell of the Sudoku.

Types of variables
int, bool, float, string, set and array.



Add constraints

A constraint is a bidirectionnal relation among variables. Example:
var 1..10: x;
var 1..10: y;
int: n = 4;
constraint x = y + n;

If x changes, it impacts y , which change as well to satisfy the equality.
Similarly, if y changes, it impacts x .
I Arithmetic constraints: x < y (and also <,<=,>,>=,=)
I Arithmetic expressions: y - z = x + 3 (-,+,*,/,mod,div).
I Boolean constraints: x != y \/ y = 0 (\/,/\,->,<->,not).



Example: Map coloring
Find a coloring of the following map such that:
I Consider only the districts 3, 4, 5, 11, 12.
I Use only three colors.
I Two adjacents districts do not have the same color.

Code skeleton on hyc.io/teaching/is1.html

http://hyc.io/teaching/is1.html


Solution: Map coloring

int: nc = 3;

var 1..nc: dis3 ;
var 1..nc: dis4 ;
var 1..nc: dis5 ;
var 1..nc: dis11 ;
var 1..nc: dis12 ;

constraint dis3 != dis4;
constraint dis3 != dis11;
constraint dis4 != dis11;
constraint dis4 != dis12;
constraint dis4 != dis5;
constraint dis11 != dis12;

solve satisfy;
output ["dis3 = \(dis3)\t dis4 = \(dis4)\t dis5 = \(dis5)\n",

"dis11 = \(dis11)\t dis12 = \(dis12 )"];



Exercise: Abbot Puzzle

We distribute 100 corn boxes to 100 people such that:
I Each man recieves 3 boxes, each woman 2, and each child half a box.
I There are 5 times more women than men.
I Find a box distribution among men, women and children.



Exercise: Who cheated?

Three students are interrogated to know if someone cheated.
I A : There is one cheater.
I B : There are two cheaters.
I C : There are three cheaters.

The students cheating are always lying, and those not cheating always tell
the truth. Who’s cheating?



More on MiniZinc

Command line:
I minizinc paris-color.mzn: Find the first solution.
I minizinc -a paris-color.mzn: Find all solutions.

In the IDE, tick the box “Print all solutions” in the configuration panel.

MiniZinc architecture
I Model (.mzn) + Data (.dzn) generate a FlatZinc (.fzn) given to a

constraint solver for solving the problem.
I Data files set the parameters of a model (example: nc = 2;).
I minizinc paris-color.mzn paris-color.dzn
I minizinc paris-color.mzn -D"nc = 2;"
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Another example: All-interval series problem

For a series of 12 notes, each pitch and each interval between between two
successive notes must be distinct.

& 124 n# n n n# n n n n# n# n# n n♮ ♮

Model in MiniZinc:
int: n = 12;
array[1..n] of var 1..n: pitches ;
array[1..n−1] of var 1..n − 1: intervals;
constraint forall(i in 1..n − 1)

( intervals [ i ] = abs(pitches [ i+1] − pitches[i ]));
constraint alldifferent ( pitches );
constraint alldifferent ( intervals );

solve satisfy;



How does a constraint solver work?

NP-complete nature

I Try all the combination until we find a solution.
I Backtracking algorithm building and exploring the state space.

& 124

& 124 n
. . .
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Search tree (step 1)
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Search tree (step 2)
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Search tree (step 3)
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Search tree (step 4)
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Search tree (step 5)
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Solving algorithm

All constraint programming solvers are based on this base backtracking
algorithm, but contain many additional optimizations.

Optimizations

I Propagation consists in removing inconsistent values in every node.
I Learning schemes in order to avoid making the “same mistake” again

(e.g. CDCL in SAT solver).
I Symmetry breaking.
I Various search strategies.
I . . .
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Optimization problem

I We wish to find a solution maximizing or minimizing a value among
all solutions satisfying the constraints.

I We replace solve satisfy; by:
1. solve maximize x+y; to maximize the expression x + y .
2. solve minimize a; to minimize the variable a.

I Very common in “real life”, we often want to minimize the cost, or
maximize productivity, . . .



Revisiting map coloring

We want to minimize the printing cost.
I We have three couleurs: white, black and red.
I Printing a district in white costs 1€, in black 2€, and in red 3€.
I What is the coloring with the minimal cost?



Solution: Revisiting map coloring

I Trick: the number of the color is also its cost.
I We have to give an upper bound to the cost.
I For efficiency, you should try to always give an upper bound to

variables.
var 1..nc∗5: cost = arr3 + arr4 + arr5 + arr11 + arr12;

solve minimize cost;

What to do if the costs are: white (1€), black (1€) and red (4€)?
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Assignment problem

Given objects in a domain, find the matching objects in a codomain.

Examples

I Given the domain of districts {1, .., 5}, find its matching colors in the
codomain {1, .., 3}.

I Given the domain of colors {1, .., 3}, find its matching costs in the
codomain {1, 4}.



Set

Reminder
I Parameters (int: x = 1;) are instantiated in the beginning.
I Decision variables (var 1..5: vx;) are instantiated as the solving

process progresses: 1..5 represents the set of possible values.

Set
I set of int: DIS = 1..5; represents the integer set {1, .., 5}.
I var DIS: dis;?

DIS stays a set (even after solving!) but dis
eventually becomes an int.

I var set of int: disS = 1..5; ? The final type of disS is a
set, its value belongs to the powerset P({1, 2, 3, 4, 5}).
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Arrays

I Indices of an array are represented by a set of integers.
I Matching between DOM and CODOM can be static (cf. price).

DOM districts {1, .., 5} to CODOM colors {1, .., 3}.
int: dis3 = 1; int: dis4 = 2;
set of int: DIS = 1..5;
set of int: COLOR = 1..3;
set of int: PRICE = {1, 4};
array[DIS] of var COLOR: color;
array[COLOR] of PRICE: price = [1, 1, 4];

constraint color[dis3 ] != color [ dis4 ];
...

How to use arrays in constraints?



Generators

Whenever you have arrays in a programming language, you also have
constructs to iterate over these:
I Fold : Traverse an array to build an unique object (e.g. sum of an

array).
array[1..n] of var 1..c: cost ;
var 1..n∗c: total = sum(cost);

I Map: Traverse an array to build another array (e.g. multiply all
elements by 2).

array[1..n] of var 1..c∗2: double_cost =
[ cost [ i ] ∗ 2 | i in 1.. n ];



Generator Map/Filter (list comprehension)

Given an array of elements, for each element satisfying some criterions
(filters), we apply an operation and return the new array:

% neighbors[ i , j ] is the score that i gives to j .
array[1..n, 1.. n] of 0.. p: neighbors ;
% We compute the score of everybody, we use a nested list comprehension.
array[1..n] of 0.. p∗n: score =
[sum([neighbors [ i , j ] | j in 1.. n where i != j ])
| i in 1.. n ];



Fold generator

Given an array of elements, return a result.
We can compute the global score of all people:

var 0..p∗n∗n: global_score =
sum([neighbors [ i , j ] | i , j in 1.. n where i != j ]);

Syntactic sugar
Instead of sum([e | g]) we can write sum(g)(e):

var 0..p∗n∗n: global_score =
sum(i , j in 1.. n where i != j)

(neighbors [ i , j ]);



Other generators

I Similarly to sum(array), we have product(array).
I To generate a conjunction of constraints, we use forall(array):

int: n = 3;
constraint forall(i,j in 1..n where i < j)

(t [ i ] != t[ j ]);

Importantly, the forall is unfolded at compile-time into:
constraint t[1] != t [2] /\ t [1] != t [3] /\ t [2] != t [3];



Map coloring (with arrays)

Rewrite the map coloring optimization problem with arrays, starting from
the following example:

int: dis3 = 1; int: dis4 = 2;
set of int: DIS = 1..5;
set of int: COLOR = 1..3;
set of int: PRICE = {1, 4};
array[DIS] of var COLOR: color;
array[COLOR] of PRICE: price = [1, 1, 4];

constraint color[dis3 ] != color [ dis4 ];
...
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Sub-structure of a problem

Many problems share identical sub-structure, for instance “all the elements
of this array must be distinct”.

Global constraints
I N-ary constraints capturing a particular sub-problem.
I Reusable abstraction across problems.
I They can be implemented very efficiently using dedicated algorithms.



Alldifferent constraint

The predicate alldifferent(array) is bundled in the MiniZinc standard
library. To use it, we must include the corresponding library.

include " alldifferent .mzn";
int: N = 9;
array[1..N,1..N] of var 1..N: sudoku;
constraint forall(l in 1..N)( alldifferent ([ sudoku[l ,c] | c in 1..N]));

Note: We can use include "globals.mzn" to include all the available
global constraints at once.



N-Queens problem

Given a chess board of size N ∗N, place on each line a queen such that no
queen can attack another one (line, column, the two diagonals).
Test with N = 35, does global constraints help to reduce the execution
time?



Packing Problem

I Loading a truck with packages while balancing the weight.
I Optimal plan of an appartment to maximize the number of rooms (of

a minimal size).
I Electronic design automation: packing of blocks into a circuit layout.



Geost

These problems have a common sub-structure captured by the global
constraint Geost(k, Objects, SBoxes).



Job scheduling under resources

I Course planning where teachers have preferences.
I Maximize productivity in a factory.
I ...



Cumulative

predicate cumulative(array [int] of var int: s,
array [int] of var int: d,
array [int] of var int: r ,
var int: b)

Given a set of tasks, a task i starts at time s[i ] for a duration of d [i ], and
use r [i ] resources. The capacity of resources per instant is b (on the
diagram, b = 8).



Global constraint catalog

There are many global constraints (> 400), a part of it is being referenced
on http://sofdem.github.io.

I Don’t panick! It’s mostly variants of a smaller pool of “main” global
constraint.

http://sofdem.github.io
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Conclusion

The paradigm of constraint programming is suited to solve combinatorial
problem.
I We declare the problem, and let the system solve it for us.
I We focus on the problem, rather than the resolution method.
I Numerous solving algorithms exist depending on the problem (local

search, MIP, SMT...).
This is only an introduction...
I Graph modelling, string constraints, . . .
I Symmetry breaking
I Search strategy: IDDFS, LDS, . . .
I Parallelization (EPS, . . . )



To go further

The following online classes and papers are nice places to start:
I Coursera – Modeling Discrete Optimization (P. Stuckey, J. Lee)
I Coursera – Discrete Optimization (P. Van Hentenryck): More general

course on various paradigms (CP, MIP, local search).
I Guido Tack. Constraint Propagation – Models, Techniques,

Implementation
I If you are interested to know more, don’t hesitate to contact me, and

share your progresses ;-)
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