Overview of the Course

LATTICE THEORY FOR PARALLEL PROGRAMMING

Pierre Talbot
pierre.talbot@uni.lu

16th September 2025

University of Luxembourg

UNIVERSITE DU
LUXEMBOURG



Why Math?? Why Lattice??

Some cool computer science stuffs are highly inaccessible without the appropriate math
background! Applications of lattice theory in C.S. include:

Conflict-free replicated data type (field of distributed computing).

Parallel lattice programming (field of parallel programming).

Abstract interpretation (field of software verification).

Abstract satisfaction (field of combinatorial optimization).

Neural network verification (field of machine learning).

Denotational semantics (field of programming languages).

This course gives you foundation in lattice theory and a broad
overview of its applications to computer science.



Studying something only a few people know can unlock very interesting jobs:

©Meta with Sparta:

Abstract Over 50% of the security vulnerabilities we found across Meta's family of
apps (Facebook, Instagram, WhatsApp, Messenger, Oculus...) are detected
automatically using Abstract Interpretation-based tools. In the talk, | will present the

©Redis

Why would you love this job?

o You will be at the forefront of cutting-edge technology, working on the implementation and optimization
M Types (CRDTs) within Redis, one of the most widely used NoSQL databases. This role offers a unique oppor

distributed systems challenges, ensuring high availability and consistency across multiple nodes, while c«
dedicated to pushing the boundaries of database technology.

©Academia for a PhD

©Anywhere: solve complex problems in industry.



Lattice Theory in a Nutshell



Partially Ordered Set

A partially ordered set (poset) is essentially a set in which we order its elements:

e Age relation: is-older-than.
e Family tree and its is-parent-of relation.

e Inheritance relationship in C4+.

What other examples of order?



Partially Ordered Set

A partially ordered set (poset) is essentially a set in which we order its elements:

e Age relation: is-older-than.
e Family tree and its is-parent-of relation.
e Inheritance relationship in C4+.

What other examples of order?
What properties does an order should have?



Partially Ordered Set

A partially ordered set (poset) is a tuple (S, <) where:

e Sisaset

e < is a binary relation (an order) such that Vx,y € S:
o Reflexive: x < x.
e Antisymmetric: x < y and y < x implies x = y.
e Transitive: x < y and y < z implies



(dashed lines indicate infinite chains)
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A lattice is a poset with a little bit more structure.

Intuition: We want each pair of element x, y to have a “unique common ancestor" and

®4>@>®

“unique child”.



Join and Meet

Formally, what is the “unique common ancestor” of x and y in a lattice (S, <)?

Least upper bound

Let U={z€ S |z>x,z >y} the set of elements both greater than x and y.
The least upper bound (lub) is the smallest element of U, e.g. s € U such that
Vt € U,s < t. The lub is denoted by x LI y (also x \V y depending on notation).
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Formally, what is the “unique common ancestor” of x and y in a lattice (S, <)?

Least upper bound

Let U={z€ S |z>x,z >y} the set of elements both greater than x and y.
The least upper bound (lub) is the smallest element of U, e.g. s € U such that
Vt € U,s < t. The lub is denoted by x LI y (also x \V y depending on notation).

Exercise: define the meet operation x My (or x A y) which is defined similarly for the greatest

lower bound (glb).

A lattice (L, <) is a poset where the lub and glb exists for all pairs of elements x,y € L.
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Connection to CS

A lattice (L, <) is akind to types in CS, e.g., struct T {...}; in C.
An element of a lattice is akind to an instantiation T x = ... ;.
What about computation? Functions over L!

But not any function: the monotone functions (Vx,y € L,x <y = f(x) < f(y)).
Why? By connecting the computation to the lattice order, we can prove some properties such
as determinism and termination.

Ingredients of Lattice Theory for CS

e Lattice = Type
e Element of lattice ~ Value

e Computing fixpoint of monotone function ~ Execution of program

Fixpoint: A fixpoint is an element x € L such that f(x) = x.




Parallel Lattice Programming



Pessimistic Parallel Programming



Running example: parallel maximum

Each thread computes its local max (map), then we compute the max of all local max (reduce).

3 2 10 23 2 7 91 1 0 0 42 11 8 1 32

~ v v

° Map: Thread 1, m; =23 Thread 2, my, =91 Thread 3, m3 = 42

e Reduce: max([23,91,42]) = 91.



Running example: parallel maximum

Each thread computes its local max (map), then we compute the max of all local max (reduce).

3 2 10 23 2 7 91 1 0 0 42 11 8 1 32

~ v v

° Map: Thread 1, m; =23 Thread 2, my, =91 Thread 3, m3 = 42

e Reduce: max([23,91,42]) = 91.

Sequential bottleneck: With 100 elements (10 threads), the reduce step takes as much time
as the map step.

How to program the reduce step in parallel?



Parallel max

/*x Suppose as many threads as elements in ‘data‘. x/
void max(int tid, const int* data, int* m) {
if (dataltid] > *m) {
*m = data[tid];
T
}

Then you run:

*m = MIN INT;
max(0, data, m) || ... || max(n-1, data, m)

where p || q is the parallel composition.

10



Parallel max

/*x Suppose as many threads as elements in ‘data‘. x/
void max(int tid, const int* data, int* m) {
if (dataltid] > *m) {
*m = data[tid];
T
}

Then you run:

*m = MIN INT;
max(0, data, m) || ... || max(n-1, data, m)

where p || q is the parallel composition.

Good? No! Data-race.
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Parallel max fixe

/*% Suppose as many threads as elements in ‘data‘. */
void max(int tid, const int* data, int* m) {
if (dataltid] > *m) {
lock(m) {
*m = data[tid];
}
}
}

11



Parallel max fixe

/*% Suppose as many threads as elements in ‘data‘. */
void max(int tid, const int* data, int* m) {
if (dataltid] > *m) {
lock(m) {
*m = data[tid];
}
}
}

Good? No!

Can produce wrong results.

11



Parallel max fixed again!?

/*x Suppose as many threads as elements in ‘data‘. x/
void max(int tid, const int* data, int* m) {
lock(m) {
if (dataltid] > *m) {
*m = data[tid];
}
¥
}
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Parallel max fixed again!?

/*x Suppose as many threads as elements in ‘data‘. x/
void max(int tid, const int* data, int* m) {
lock(m) {
if (dataltid] > *m) {
*m = data[tid];
}
¥
}

Good? Yes!

But our “parallel” algorithm is now sequential.

12



Atomics to the rescue (?)

C++26 atomics can unlock lock-free programming for better efficiency :)

void max(int tid, const int* data, std::atomic<int>& m) {
m.fetch_max(dataltid]);
}
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Atomics to the rescue (?)

C++26 atomics can unlock lock-free programming for better efficiency :)

void max(int tid, const int* data, std::atomic<int>& m) {
m.fetch_max(dataltid]);
}

Atomic operations are (much) slower than traditional operations.

13



Reduction in CUDA

Chapter 10 in book “Programming Massively Parallel Processors: A Hands-on Approach”.

Reduction
And minimizing divergence

Chapter Outline

10.1 211
10.2 ion trees 213
10.3 Asimple ion kernel 217
10.4 Minimizing control di 219
10.5 Minimizing memory di 223
10.6 Minimizing global memory accesses 225
10.7 Hierarchical reduction for arbitrary input length ..o 226
10.8 Thread coarsening for reduced overhead 22
10.9 Summary 231
i 232

14



Reduction in CUDA

Chapter 10 in book “Programming Massively Parallel Processors: A Hands-on Approach”.

ead 0
ead 1
ead 2
ead3
ead 4
ead5
ead 6
ead 7

Initial load from global memory

Subsequent writes and reads
continue in shared memory

Not easy, and eventually, some threads inactive.

14



The problem with threads

Multithreading programming is pessimistic.

For a data race that happens once in million instructions, this model:

e Makes parallel programming painful and difficult.
e Slows down computation.

e Prevents us from thinking with a true parallel mindset.

15



Optimistic Parallel Programming




Let’s be optimistic

Instead of being afraid of data races, let's welcome them as part of the programming model
itself.

void max(int tid, const int* data, int* m) {
if (datal[tid] > *m) {
*m = data[tid];
¥
}

What happens in case of a data race?

e Suppose two threads with data = [1, 2].
e |If a data race occurs, *m ==

e But if we run max again, then we must obtain *m == 2.




Let's do extra work only when data races occur (optimistic)

In case of n data races, we run the algorithm n + 2 times:

int old = *m + 1;
while(old '= *m) {
old = *m;
max(0, data, m) || ... || max(n-1, data, m);

}

This is called the fixpoint loop.

17



The Bigger Picture

We have computed a fixpoint over a lattice data structure!

18



The Bigger Picture

We have computed a fixpoint over a lattice data structure!

e Lattice of increasing integers: ZI = (Z, <), modelled by an int type.

e Fixpoint of the function f £ max(data[0], m) o . ..o max(data[n — 1], m) on the element
m e ZI.

e The fixpoint of f is the maximum of the array!

We will introduce a parallel model of computation over lattice!

18



Intuition: Lattice to Reconciliate Reduction

e Let f and g be two functions executed by two threads.
e The join operator U acts as a sound reduction to obtain

e Least fixpoint computation: 1fp (f || g) =

19



Application: Constraint Solving on GPU

Using this paradigm, we have built Turbo':

e First general constraint solver fully executing on GPU (propagation + search).
= General: Support MiniZinc and XCSP3 constraint models.
= Simple: interval-based constraint solving + backtracking search (no global constraints,
learning, restart, event-based propagation, ...).
= Efficient?: On-par with Choco.
= Open-source: Publicly available on https://github.com/ptal/turbo.

e Ternary constraint network: representation of constraints suited for GPU architectures.

ITalbot P. et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.
20



https://github.com/ptal/turbo

Conflict-free Replicated Data Type (CRDT)




Conflict-free Replicated Data Type (CRDT)

Same idea in the context of distributed systems.
For instance a replicated counter (e.g. “likes” on a picture).

Server A

7N\
click on tl«e—;? 1 \ - | 3 \a/

r// \\j

0

N

Server C

CRDT = Lattice + Monotone Functions
21



Denotational Semantics




Denotational Semantics

One of the first application of lattice theory was not to “compute with lattice” but to formally
describe the meaning of a program. Developed by Christopher Strachey and Dana Scott in the
70s:

22



Denotational Semantics

One of the first application of lattice theory was not to “compute with lattice” but to formally

describe the meaning of a program. Developed by Christopher Strachey and Dana Scott in the
70s:

e Without formalization, it is hard to reason on what is a program doing, and to prove it is

actually doing it right!

e Capture the essence of a programming language, and to show its implementation is
correct.

e Unlock formal static analysis: abstract interpretation.
= Proving the absence of bugs!




Attempt 1: Defining a Program Mathematically

How to assign to a program P a mathematical meaning?

What does x := 3 means, mathematically?

2For simplicity, let’s restrict us to integers
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What does x := 3 means, mathematically?

Let’s try: we define an environment from variables to values: a function? Env £ Var — Z.

e The denotation of x := 3 is the function {x — 3} € Env.
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Attempt 1: Defining a Program Mathematically

How to assign to a program P a mathematical meaning?

What does x := 3 means, mathematically?

Let’s try: we define an environment from variables to values: a function? Env £ Var — Z.

e The denotation of x := 3 is the function {x — 3} € Env.

e The denotation of x := 3; y := 4 is the function {x — 3,y > 4}.

e The denotation of x := 3; x := 4 is the function {x — 4}.

But what to do if the denotation depends on the input of the program?

2For simplicity, let’s restrict us to integers

23



Attempt 2: Defining a Program Mathematically

Suppose the function x := y + 1; where y is an input of the program (e.g. a function's
parameter or from a call to scanf).
What is its denotation?

24



Attempt 2: Defining a Program Mathematically

Suppose the function x := y + 1; where y is an input of the program (e.g. a function's
parameter or from a call to scanf).
What is its denotation? {x — y + 1}? But we don't know y (function is Var — Z)
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Attempt 2: Defining a Program Mathematically

Suppose the function x := y + 1; where y is an input of the program (e.g. a function's
parameter or from a call to scanf).
What is its denotation? {x — y + 1}? But we don't know y (function is Var — Z)

We must lift everything to Env — Env: the denotation is a function modifying an
environment, called a state transformer.

24



Example State Transformer

Formally...

e Let p € Env be an environment, e.g. {y — 1}.

o Let S[.] € Program — (Env — Env) be a state transformer.

e Assignment: S[x := e]p = p[x — eval(e)].



Example State Transformer

Formally...

e Let p € Env be an environment, e.g. {y — 1}.

e Let S[.] € Program — (Env — Env) be a state transformer.
e Assignment: S[x := e]p = p[x — eval(e)].
e Evaluation:

e eval(x, p) = p(x).
e eval(c, p) = c where c € Z.
o eval(er + e, p) = eval(er, p) + eval(e, p).



Example State Transformer

Formally...

e Let p € Env be an environment, e.g. {y — 1}.

e Let S[.] € Program — (Env — Env) be a state transformer.
e Assignment: S[x := e]p = p[x — eval(e)].
e Evaluation:

e eval(x, p) = p(x).
e eval(c, p) = c where c € Z.
o eval(er + e, p) = eval(er, p) + eval(e, p).

Slx=y+1lp=plx— eval(y + 1,p)] = {x = 2,y = 1}

The denotation of x := y + 1 is the function S[x := y + 1].



Compositionality

A principle of denotational semantics is compositionality, we can define the denotational
semantics of atomic statement and build the semantics of compound statements from it.

Exercise: How to define the denotational semantics of the sequence operator si; s, where s;
and s, are statements (either assignment or themselvers sequences)?

Going further: Fixpoint of state transformer can be used to describe the denotation of loop
and recursive functions!

26



Abstract Interpretation




Abstract Interpretation

General, automated, incomplete and sound.

Success story: Astrée, prove absence of bugs in synchronous
control/command aerospace software (Airbus).

Invented by Patrick and Radhia Cousot in the seventies.

3Patrick Cousot and Radhia Cousot. “Abstract interpretation: a unified lattice model for static analysis of o

programs by construction or approximation of fixpoints”. In: POPL 77'.



Abstract Interpretation

Abstract interpretation answers precisely elementary questions:

e What is a program?
e What is a property of a program?

e What is the verification problem?
It builds on a theory of approximation:

e Concrete semantics: the mathematical denotation of the program.

e Abstract semantics: an approximation of the concrete semantics in order to design
effective verification algorithm.

e The connection between the two is formalized by Galois connection.

28



Abstract Satisfaction




One Problem, Many Commun , Many Formalisms

Many communities emerged to solve the same problem: find p such that Ak, .

BUT they (generally) focus on different fragments of FOL:

Propositional fragment (SAT): (aV b) A (=bV ¢) with a,b,c € {0,1}.

Pseudo-Boolean fragment: Zlgign ¢+ a; < ¢g with a; € {0,1} and ¢; some integers constants.
Linear programming (LP): Z1gi§n c;i x bj < by with b; € R and ¢; some real constants.

Integer linear programming (ILP): Zlgign c;i % bj < by with b; € Z and c¢; some integer constants.

Mixed integer linear programming (MILP): >, ;. ci x bj < by with b; € Z or b; € R and ¢; some integer
or real constants.

Uninterpreted fragment (logic programming).

Discrete constraint programming: (X, D, C) with D; € P¢(Z).
Continuous constraint programming: (X, D, C) with D; € Z(R).
Satisfiability modulo theories (SMT).

29




One Theory to Rule Them All?

SAT [DHK13]

SMT [DHK14]

Logic programming [Cou20]

Constraint programming (R) [Pel+13]
Constraint programming (Z) [Tal+19] Abstract domains

Linear programming [CH78]

Answer set programming



Abstract Satisfaction

e Concrete domain: Solutions of a combinatorial problem.
e Abstract domain: Approximation of the set of solutions.

e Fixpoint: Computing the solutions of the problems.

Use the same theoretical framework for different methods.
Apply techniques from one field to another.

31



Neural Network Verification




Neural networks are widely used in many applications

Public Safety and Security
Image and Video Recognition
Medical Diagnosis

Yi-Nung Tsao (uni.lu) Special Meeting 2

June 20, 2025

32



But, neural networks are vulnerable to adversarial examples

An adversarial example is a correctly classified input with small noise that causes the neural

networks to produce an incorrect result despite the modifed input appearing normal to
humans.

Stop sign Adversarial perturbation flowerpot
Confidence: 09153 Confidence: 0.8374

Yi-Nung Tsao (uni.lu) Special Meeting 2 June 20, 2025

33



To ensure the reliability of neural networks

Definition: Preconditions

The preconditions in the input layer are defined by the set

®(xg,€) 2 {x € R% | p(x,xp) <0}, where p: R% x R% — R is a function defining a

perturbation and € € R is the maximum perturbation.

Origin Image

L infinity

Yi-Nung Tsao (uni.lu) Special Meeting 2

>

Rotation

June 20, 2025
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e Concrete domain: Set of all perturbated inputs.
e Abstract domain: Approximation of the set.

e Fixpoint: Checking if the perturbated inputs satisfy a property (e.g. are correctly
classified).

35



Resources




Lattice Theory

Introduction to
Lattices and order

second Edition

/\ B.A. Davey

F /I‘QHA. Priestley
v
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Abstract Interpretation

e MPRI class of Antoine Miné:
https://www-apr.lip6.fr/~mine/enseignement/mpri/2023-2024/ (two slides

stolen from this class).
e Two recent books:

PRINCIPLES OF
ABSTRACT INTERPRETATION

INTRODUCTION
TO STATIC ANALYSIS
AN ABSTRACT INTERPRETATION PERSPEGTIVE

XAVIER RIVAL AND KWANGKEUN Y1

PATRICK COUSOT

37



https://www-apr.lip6.fr/~mine/enseignement/mpri/2023-2024/

CRDT

A website with publications and infos: https://crdt.tech/
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Neural Network Verification

Nowpublisher, 2025
Foundations and Trends® in Programming Languages > Vol 8 > Issue 3-4

Safety and Trust in Artificial Intelligence with Abstract Interpretation

By Gagandeep Singh, University of lllinois Urbana-Champaign, USA, ggnds@illinois.edu &2 | Jacob Laurel, Georgia Institute of
Technology, USA, jlaurelé@gatech.edu & | Sasa Misailovic, University of lllinois Urbana-Champaign, USA, misailo@illinois.edu & |
Debangshu Banerjee, University of lllincis Urbana-Champaign, USA, db21@illinois.edu & | Avaljot Singh, University of lllinois
Urbana-Champaign, USA. avaljot2@illinois.edu & | Changming Xu, University of lllinois Urbana-Champaign, USA,
cx23@illinois.edu & | Shubham Ugare. University of lllinois Urbana-Champaign, USA, sugare2@illinois.edu &2 | Huan Zhang,
University of lllinois Urbana-Champaign, USA, huanz@illinois.edu =
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