Conflict-Free Replicated Data Type

LATTICE THEORY FOR PARALLEL PROGRAMMING

Pierre Talbot
pierre.talbot@uni.lu

1st October 2025

University of Luxembourg

UNIVERSITE DU
LUXEMBOURG

Motivation

How to Collaborate? (Git Example)

git commit

git pusla
GITHUB
git fetech

R %
git commit git merge

Conflicts are (semi-automatically) resolved by the users!

How to Collaborate? (Word Example)
i SCo«)\.i
send email (SMTP)

Mail Server \-

receive email (IMAP)

R -
Save Oops conflicts....

Conflicts are resolved by the users!

How to Collaborate? (Todolist Example)

ﬁ add "buy coffee"

Central server

& add "otestro:{

the world"

T2 Serializable execution

How to Collaborate? (Todolist Example)

A -
R

add "otestro:{
the world"

add "buy coffee"

network m‘ternﬂ:‘tnon)

Serializable execution

System fails under network partition.

Central Server Issues

1. User waits for round-trip (latency).
2. Single point of failure (DDOS).

3. Require constant connectivity.

Fixing Latency and DDOS

add "buy coffee”

Server 1 R —
asyncl«ronous \\
merging /
Server 2 - P e
& add "destroy

the world"

Fixing Constant Connectivity

asynclnr‘onous \\\

mergmg

add "buy coffee"”
‘ Local storage (\C’-/
Local storage /(\

A paradigm sometimes called “local-first application” .

But Conflicts...

delete "l:»u:f coffee”

Local storage.
.
~

2 Conflicts!

7
Local Storage /(3\

c!«c\nge ”E\UL’! coffee”
to "l:vw./ two pc\cks of coffee”

What Do We Want?

delete "l:»u:f coffee”

Server 1

CONCURRENT CONVERGENCE
OPERATIONS

Server 2

& cl«\anee ”Bul./ coffee

to "buy two Packs of coffee”

Eventual Consistency

What do we want?

e Concurrent operations: happens without knowing about each other.

L] COI‘IVEI’gEI’ICEZ same eventual state.

e Eventual delivery: eventually, every operation is seen by every node. But asynchronous:

no assumption on the order.
e Convergence: Seen same operations =- have same state.

e Don’t lose data: can happen in some systems (e.g., last writer wins).

CRDTs to the Rescue!

We are going to explore three frameworks:

e Operational Transformation: historical approach.
e Operation-based CRDTs: communicating the operations.

e State-based CRDTs: communicating the states.

10

Operational Transformation

The nice drawings in this section are taken from the CodeMesh 2016 talk of Martin Kleppmann.

Source: https://www.youtube.com/watch?v=8_DfwEpHE88

https://www.youtube.com/watch?v=8_DfwEpHE88

Collaborative Applications

e (1989-): Operational Transformation (OT): Google Docs, MS Office Online

e (2006-): Conflict-Free Replicated Data Types (CRDTs): Riak, League of Legends (chat
system), Angry Birds, TomTom GPS, ...

e See also https:
//christophermeiklejohn.com/erlang/lasp/2019/03/08/monotonicity.html

11

https://christophermeiklejohn.com/erlang/lasp/2019/03/08/monotonicity.html
https://christophermeiklejohn.com/erlang/lasp/2019/03/08/monotonicity.html

Collaborative Text Editing

&LooGlE DOCS
| Hy¢\|{o He '- 0

;,,1:4;4:& {!,eolé

Hello Helo!
o1z 2 4 e

o
1 4

12

Collaborative Text Editing

&LooGLE DOCS

Hello H}e—
L [L

o |

Q@ et

tngert "L
at pos 3\) s! 'uiy

L=
Lo
| ' +
2 3

{!,(34?6

r ™ al ol Tae) Vo | ‘l’
Hello Helo
_ | | . 1 - J
o 2 2 4 — 1]71 !
o] | 2 3

®
4

tnsect "1 at
position &

12

Collaborative Text Editing

&LooGlE DOCS
-Hyerlyoj He,l.o

| E—

L } [17‘-4] 5>

’ ".glj,ﬂa'wej {Lejé

Hello Helo!
,Cg 2 2 4 S S J

insert “L“‘ | L vy L
at pos 3 U tnsert Lo
e)& Server position ¢
. Insert "L" ot]
va T4ion 3
H G. l L o ! »
| s

2 =3 1.

12

Collaborative Text Editing

&LooGlE DocCS

| Hy¢'l| o H,e Lo
L } L o ‘
.u. it .u, edit

el el a1 2 1 |
LH&\LLQ H e L °
insert “L”‘ 3 tnses "|."
at pos 3 K—_)\SW y POS\‘:OV\ 4
@:ﬂé — (') P"Sserfoi ot] j
|-|e|.Lo’_J ello '

%]

12

Operational Transformation

e The "insert | at position 4" has been transformed to “insert | at position 5”.

e Most of the papers on OT are wrong!! (Including the first one by Ellis & Gibbs, 1989).

e The ones correct usually assume all operations needs to go through a central server
(Google Docs).

e Key role of the server: sequencing the operations.

e Jupiter (Nichols et al. 1995) the basis of Google docs, Etherpad, ...

13

Operation-based CRDTs

This section is based on the slides of Martin Kleppmann.

Source: https://www.infoq.com/presentations/crdt-distributed-consistency/

https://www.infoq.com/presentations/crdt-distributed-consistency/

ORDERED LIST CRST (NUTSHELL)

Oa la 2a Sa " Oa la 2a 3a

Nooe
NodDE R:

ORDERED LI1ST CRST (NUTSHELL)

\é') Oat xnz:{: - g Oa la Zned:z o
o
= Hello S Helllo))
Da la 24 4a 3a T e

ORDERED LIST CRST (NUTSHELL)

Oa la 2a Sa W " Oa la 2a 3a
QP eddit 1D:da o P edit 0

Hello 2 Helllo|}

Oa la 2a 3a &b

InseH: “L" . -
with i 4a ‘W\Seré v wik
afler id 2a —> | Server | id &b afte il 3a

l

NooE

ORDERED L1ST CRET (NUTSHELL)

y tnsert 1wl
Sesrver |

ORDERED LIST CRST (NUTSHELL)

la 204 4o 3a
e 4“& = g fnsert il
o —> | Server

(4"}
Y] la 22 3a)] At 10:4b
o - QP eddit 1Dida Qo e
S S
= =

Helllo EELE !
Da la 24 4a 3a AV Oa la ?ﬂ 3a ["L"I" .
ingert “L"‘ L as nc y thsert 1 wiHL
wH:L I:IA 40\ > n wrk
ﬁu{ " Wikl o
o 4k after {d 3a |
Helllol)

INSERTING IN THE SAME PLACE

abl|
la 22 2a

la 22 3a

INSERTING IN THE SAME PLACE
abe
EIBI

(alfiie

INSERTINé IN THE SAME PLACE

UEI -

ul

i

INSERTING IN THE SAME PLACE

a.
edit Za
Ga

INSERTING IN THE SAME PLACE

INSERTING IN THE SAME PLACE

INSERTING IN THE SAME PLACE

Sk ! I
PRyl =, oy
List eloments Eb>4a

la 4 Sb ba Sa 2a 3a .
with greate id 2 < ba

INSERTING IN THE SAME PLACE

INSERTING IN THE SAME PLACE

CRDT Properties

CRDTs allow collaboration without assumptions about the network topology.

Theorem: Convergence guarantee
Whenever two nodes have seen the same set of operations, possibly in a different order, they

are in the same state.

]

Essentially relying on commutative property of the operations.

Intuitive properties

CRDTs work even if messages are delayed, duplicated and reordered.

State-based CRDTs

Distributed Counter

Server A

TN
click on ti«e_;? E \ (3 \a/

D
N /
Server C

15

Distributed Counter

Servgr A Server B
7 N
)

Server C

ll«ow many clicks?

b

16

Definition of C

Key Observation: It is not necessary to have the true latest global value, as long as we obtain
it eventually.

A conflict-free replicated data type (CRDT) is a tuple (L, <,U, S, value, fi, ..., f,) where:

e (L,<,U) is a latticel.
e S is a set of values.
e fi,...,f, are monotone and extensive functions over L (extensive: Vx,x < f(x)).

e value : L — S returns the value modelled by the CRDT.

1A join semi-lattice to be precise, because we don't need the meet operation I.

17

Connections Between Distributed Computing and Lattice Theory

In distributed computing terms, we have replicas on different nodes.
An element of a CRDT r € L is only one replica (all replicas is a collection of elements in L).

e A value v € L is called the payload.

e The join operation L is called merge.

e We have one or more update operations mutating our state locally and monotonically.
e A function value is used to get the current value modelled by the CRDT. Note that if

L =S, we can have value to be the identity function.

Synchronization among the replicas is not part of the “public API" and happens in the
background. New values are merged in the current state using the merge function.

18

First Try: Grow-only Counter (G-Counter)

Suppose the lattice (Z, <), that is the chain of integers.
Let's try to design a CRDT from this lattice!

19

First Try: Grow-only Counter (G-Counter)

Suppose the lattice (Z, <), that is the chain of integers.
Let's try to design a CRDT from this lattice!

First try: Let the CRDT G; £ (Z, <, merge, Z, value, increment) where:

e increment(x) £ x +1
o merge(x,y) 2 x +y

e value(x) £ x

19

rst Try: Grow-only Counter (G-Counter)

\l] increment()

Efrver B
—>(- N\ trerements

i S 1) \\3 }xcre ent()

increment()

Server A
N Ve
Ve /

{‘/f\\

o)

N

Server C

\Lvalue()
d e

20

rst Try: Grow-only Counter (G-Counter)

Server A Server B
4 merge\\
\&oy
SL/V\C()

7

[merge\

\(0.3)

Server C

\i/value()
d-

20

rst Try: Grow-only Counter (G-Counter)

Server A

([merge \

\a3 S\)
3/ N/
AN

SL/V\C()

merge \

{
N

Server C

\l/w\lue()
d

20

rst Try: Grow-only Counter (G-Counter)

Serr\/::\\» 2 Server B
N —
N far
% \&4)
SL/V\C()
SN

(merge\

{ 43)

AN

Server C

l/va[ue()
& 7 <K WRONG

20

Second Try: Grow-only Counter (G-Counter)

Suppose the lattice (Z, <), that is the chain of integers.
Let's try to design a CRDT from this lattice!

Second try: Let the CRDT G, = (Z, <, merge, Z, value, increment) where:

e increment(x) £ x +1
o merge(x,) £ max(x,y)

e value(x) £ x

21

Second Try: Grow-only Counter (G-Counter)

\l/}ncrement()

Server A

Server B
v\crement()K i \ N %‘ew‘ev\t()
\ / m’::;ent()

Server C

lvalue()
d-

22

Secon : Grow-only Counter (G-Counter)

Sei/iA Server B
e 1 \ /;‘Ael’s{}‘
) |)
N\ L&),
SL/V\C()
TN
werge '\
03)
~_
Server C

\l/va[ue()
& -

22

Secon : Grow-only Counter (G-Counter)

SULU 4 Server B
N YR
(/merge \ e 3 \\‘

13 \
\(i/ / \\ »’/
SL/V\C()

TN

N\

(merge \

\&D)

Server C

\l/w\lue()
‘ 3 << WRONG

22

Third Try: Grow-only Counter (G-Counter)

Let n be the number of replicas (nodes of the distributed system).
Suppose the Cartesian product lattice (Z", <, 1), where:

° (Xl,...,x,,)é(yl,...,yn)<:>V1§i§n,x,-§y,-.

° (xl,...,xn)LI(yl,...,y,,)é(leIyl,...,xnUyn).

23

Third Try: Grow-only Counter (G-Counter)

Let n be the number of replicas (nodes of the distributed system).
Suppose the Cartesian product lattice (Z", <, 1), where:

o (x1,..%0) < 1y, yn) ©VI<i<nx <y
o (X1, X)) U (Ve esyn) = Uy, .oy o U yn).
Third try: Let the CRDT G3 £ (Z", <, merge, 7, value, increment) where:
e increment({x1,...,Xx,)) = (x1,...,Xqd + 1,...,x,) where id is the ID of the current node.

L4 merge((xl, cee ,X,,>, <y13 ©00 ayn>) £ <maX(X17y1)7 RS max(x,,,y,,)).

o value((x1,...,x,)) = Zlgignxi-

23

y: Grow-only Counter (G-Counter)

\L}ncrement()

Server A

P Server B
5 /7N
imcremm(\('lzoloh /\Sovzro)\meme“t()

increment()

N

! ¢
(0,00y)
\)

AN /
~_

Server C

lvalue()
d-

24

y: Grow-only Counter (G-Counter)

Server A

1 (1 . O))— Merge((o 3,0), 00 0))\

sync()

_— T
<~ merge((0,0,0), <0'3',(i)ﬁ/\

Server C

l/value()
& -

24

y: Grow-only Counter (G-Counter)

Server A Server B
- N
C merge(100), ©30) > ((03,0))
SRR 614 z\\“/’
sync()
T merge((0,3,0), (1,0,0)) = ™~
K\ A3, 7/

o Server C

\Lvalue()
d

24

Resources

Resources

o Website about CRDT: crdt.tech

e Martin Kleppmann presentation (operation-based CRDTs):
https://www.youtube.com/watch?v=8_DfwEpHES88

e John Mumm presentation (state-based CRDTs):
https://www.youtube.com/watch?v=001np2bZVRs

e Conflict-free Replicated Data Types, Nuno Preguica, Carlos Baquero, and Marc Shapiro
(2018)

e A comprehensive study of Convergent and Commutative Replicated Data Types, Marc
Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski (2011).

25

crdt.tech
https://www.youtube.com/watch?v=8_DfwEpHE88
https://www.youtube.com/watch?v=OOlnp2bZVRs

