
Conflict-Free Replicated Data Type

Lattice Theory for Parallel Programming

Pierre Talbot

pierre.talbot@uni.lu

1st October 2025

University of Luxembourg



Motivation

0



How to Collaborate? (Git Example)

Conflicts are (semi-automatically) resolved by the users!

1



How to Collaborate? (Word Example)

Conflicts are resolved by the users!

2



How to Collaborate? (Todolist Example)

3



How to Collaborate? (Todolist Example)

System fails under network partition.

3



Central Server Issues

1. User waits for round-trip (latency).

2. Single point of failure (DDOS).

3. Require constant connectivity.

4



Fixing Latency and DDOS

5



Fixing Constant Connectivity

A paradigm sometimes called “local-first application”.

6



But Conflicts...

7



What Do We Want?

8



Eventual Consistency

What do we want?

• Concurrent operations: happens without knowing about each other.

• Convergence: same eventual state.

Properties

• Eventual delivery: eventually, every operation is seen by every node. But asynchronous:

no assumption on the order.

• Convergence: Seen same operations ⇒ have same state.

• Don’t lose data: can happen in some systems (e.g., last writer wins).

9



CRDTs to the Rescue!

We are going to explore three frameworks:

• Operational Transformation: historical approach.

• Operation-based CRDTs: communicating the operations.

• State-based CRDTs: communicating the states.

10



Operational Transformation

The nice drawings in this section are taken from the CodeMesh 2016 talk of Martin Kleppmann.

Source: https://www.youtube.com/watch?v=8_DfwEpHE88

10

https://www.youtube.com/watch?v=8_DfwEpHE88


Collaborative Applications

• (1989–): Operational Transformation (OT): Google Docs, MS Office Online

• (2006–): Conflict-Free Replicated Data Types (CRDTs): Riak, League of Legends (chat

system), Angry Birds, TomTom GPS, ...

• See also https:

//christophermeiklejohn.com/erlang/lasp/2019/03/08/monotonicity.html

11

https://christophermeiklejohn.com/erlang/lasp/2019/03/08/monotonicity.html
https://christophermeiklejohn.com/erlang/lasp/2019/03/08/monotonicity.html


Collaborative Text Editing

12



Collaborative Text Editing

12



Collaborative Text Editing

12



Collaborative Text Editing

12



Operational Transformation

• The “insert ! at position 4” has been transformed to “insert ! at position 5”.

• Most of the papers on OT are wrong!! (Including the first one by Ellis & Gibbs, 1989).

• The ones correct usually assume all operations needs to go through a central server

(Google Docs).

• Key role of the server: sequencing the operations.

• Jupiter (Nichols et al. 1995) the basis of Google docs, Etherpad, ...

13



Operation-based CRDTs

This section is based on the slides of Martin Kleppmann.

Source: https://www.infoq.com/presentations/crdt-distributed-consistency/

13

https://www.infoq.com/presentations/crdt-distributed-consistency/
































CRDT Properties

CRDTs allow collaboration without assumptions about the network topology.

Theorem: Convergence guarantee

Whenever two nodes have seen the same set of operations, possibly in a different order, they

are in the same state.

Proof.

Essentially relying on commutative property of the operations.

Intuitive properties

CRDTs work even if messages are delayed, duplicated and reordered.

14



State-based CRDTs

14



Distributed Counter

15



Distributed Counter

16



Definition of CRDT

Key Observation: It is not necessary to have the true latest global value, as long as we obtain

it eventually.

Definition

A conflict-free replicated data type (CRDT) is a tuple ⟨L,≤,⊔, S , value, f1, . . . , fn⟩ where:

• ⟨L,≤,⊔⟩ is a lattice1.

• S is a set of values.

• f1, . . . , fn are monotone and extensive functions over L (extensive: ∀x , x ≤ f (x)).

• value : L → S returns the value modelled by the CRDT.

1A join semi-lattice to be precise, because we don’t need the meet operation ⊓.

17



Connections Between Distributed Computing and Lattice Theory

In distributed computing terms, we have replicas on different nodes.

An element of a CRDT r ∈ L is only one replica (all replicas is a collection of elements in L).

• A value v ∈ L is called the payload.

• The join operation ⊔ is called merge.

• We have one or more update operations mutating our state locally and monotonically.

• A function value is used to get the current value modelled by the CRDT. Note that if

L = S , we can have value to be the identity function.

Synchronization among the replicas is not part of the “public API” and happens in the

background. New values are merged in the current state using the merge function.

18



First Try: Grow-only Counter (G-Counter)

Suppose the lattice ⟨Z,≤⟩, that is the chain of integers.

Let’s try to design a CRDT from this lattice!

First try: Let the CRDT G1 ≜ ⟨Z,≤,merge,Z, value, increment⟩ where:

• increment(x) ≜ x + 1

• merge(x , y) ≜ x + y

• value(x) ≜ x

19



First Try: Grow-only Counter (G-Counter)

Suppose the lattice ⟨Z,≤⟩, that is the chain of integers.

Let’s try to design a CRDT from this lattice!

First try: Let the CRDT G1 ≜ ⟨Z,≤,merge,Z, value, increment⟩ where:

• increment(x) ≜ x + 1

• merge(x , y) ≜ x + y

• value(x) ≜ x

19



First Try: Grow-only Counter (G-Counter)

20



First Try: Grow-only Counter (G-Counter)

20



First Try: Grow-only Counter (G-Counter)

20



First Try: Grow-only Counter (G-Counter)

20



Second Try: Grow-only Counter (G-Counter)

Suppose the lattice ⟨Z,≤⟩, that is the chain of integers.

Let’s try to design a CRDT from this lattice!

Second try: Let the CRDT G2 ≜ ⟨Z,≤,merge,Z, value, increment⟩ where:

• increment(x) ≜ x + 1

• merge(x , y) ≜ max(x , y)

• value(x) ≜ x

21



Second Try: Grow-only Counter (G-Counter)

22



Second Try: Grow-only Counter (G-Counter)

22



Second Try: Grow-only Counter (G-Counter)

22



Third Try: Grow-only Counter (G-Counter)

Let n be the number of replicas (nodes of the distributed system).

Suppose the Cartesian product lattice ⟨Zn, ≤̇, ⊔̇⟩, where:

• (x1, . . . , xn) ≤̇ (y1, . . . , yn) ⇔ ∀1 ≤ i ≤ n, xi ≤ yi .

• (x1, . . . , xn) ⊔̇ (y1, . . . , yn) ≜ (x1 ⊔ y1, . . . , xn ⊔ yn).

Third try: Let the CRDT G3 ≜ ⟨Zn, ≤̇,merge,Z, value, increment⟩ where:

• increment(⟨x1, . . . , xn⟩) ≜ ⟨x1, . . . , xid + 1, . . . , xn⟩ where id is the ID of the current node.

• merge(⟨x1, . . . , xn⟩, ⟨y1, . . . , yn⟩) ≜ ⟨max(x1, y1), . . . ,max(xn, yn)⟩.
• value(⟨x1, . . . , xn⟩) ≜

∑
1≤i≤n xi .

23



Third Try: Grow-only Counter (G-Counter)

Let n be the number of replicas (nodes of the distributed system).

Suppose the Cartesian product lattice ⟨Zn, ≤̇, ⊔̇⟩, where:

• (x1, . . . , xn) ≤̇ (y1, . . . , yn) ⇔ ∀1 ≤ i ≤ n, xi ≤ yi .

• (x1, . . . , xn) ⊔̇ (y1, . . . , yn) ≜ (x1 ⊔ y1, . . . , xn ⊔ yn).

Third try: Let the CRDT G3 ≜ ⟨Zn, ≤̇,merge,Z, value, increment⟩ where:

• increment(⟨x1, . . . , xn⟩) ≜ ⟨x1, . . . , xid + 1, . . . , xn⟩ where id is the ID of the current node.

• merge(⟨x1, . . . , xn⟩, ⟨y1, . . . , yn⟩) ≜ ⟨max(x1, y1), . . . ,max(xn, yn)⟩.
• value(⟨x1, . . . , xn⟩) ≜

∑
1≤i≤n xi .

23



Third Try: Grow-only Counter (G-Counter)

24



Third Try: Grow-only Counter (G-Counter)

24



Third Try: Grow-only Counter (G-Counter)

24



Resources

24



Resources

• Website about CRDT: crdt.tech

• Martin Kleppmann presentation (operation-based CRDTs):

https://www.youtube.com/watch?v=8_DfwEpHE88

• John Mumm presentation (state-based CRDTs):

https://www.youtube.com/watch?v=OOlnp2bZVRs

• Conflict-free Replicated Data Types, Nuno Preguiça, Carlos Baquero, and Marc Shapiro

(2018)

• A comprehensive study of Convergent and Commutative Replicated Data Types, Marc

Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski (2011).

25

crdt.tech
https://www.youtube.com/watch?v=8_DfwEpHE88
https://www.youtube.com/watch?v=OOlnp2bZVRs

