More Conflict-Free Replicated Data Types

LATTICE THEORY FOR PARALLEL PROGRAMMING

[]
Pierre Talbot “ Il I I "
pierre.talbot@uni.lu °

17th October 2025 UNIVERSITE DU
LUXEMBOURG

University of Luxembourg

Definition of State-based CRDT

A state-based conflict-free replicated data type is a tuple (L, <, S, value, fi,...,f,) where:

o (L,<,U)is a latticel.
e S is a set of values.
e fi,...,f, are monotone and extensive functions over L (extensive: Vx,x < f(x)).

e value : L — S returns the value modeled by the CRDT.

1A join semi-lattice to be precise, because we don't need the meet operation I.

Grow-only Counter

Let n be the number of replicas (nodes of the distributed system).
G-Counter is a CRDT GC £ (Z", <., 1, Z, value, incrementy, . . ., increment), where:

o (X1, %) < V1, yn) @ VI<i<nx <y

o (x1,.-%) U (y1,-- 0, ¥n) 2 (max(x1, 1), - - -, max(xn, ¥n))-
e | =(0,...,0).

o increment;({x1,...,xn)) 2 (x1,. .., xk +1,...,%,).

value({xy, ..., xn)) = Zlgign X;.

where incrementy, is executed on the k" replica.

Exercise: Try to define a counter that is decreasing.

Decrease-only Counter

Let n be the number of replicas (nodes of the distributed system).
D-Counter is a CRDT DC £ (Z", <, Y, 7Z, value, decrement, . .. , decrement), where:

o (X1,..yXn) S (V1y.oy¥n) VI <i<n x>y

o (X1, %) Y (V1,5 ¥n) = (min(xa, 1), - -, min(xp, yn))-
o L=(0,...,0).

o decrement;({x1,...,xn)) = (X1, .., xxk — 1,..., %)

value({x1, ..., Xn)) £ Y1 <icpXi-

Use-cases of G-Counter in Combinatorial Optimization

We explore a search tree in parallel, and wish to get the optimal solution.

e Branch-and-Bound: the replicas share a common objective bound, either an increasing or
decreasing counter (if maximization or minimization problem).

e Statistics: the number of nodes explored in total, number of solutions, number of failed
nodes,

Positive-Negative Counter (PN-Counter)

Positive-Negative Counter (PN-Counter)

PN-Counter
Let n be the number of replicas (nodes of the distributed system) and / = {1,...,n}

PN-Counter is a CRDT PN £ (Z" x Z", <, (], 1,Z, value, {increment;};c;, {decrement;}ic;),
where:
e The lattice-theoretic operations are inherited from the Cartesian product.

e The monotone functions are extended as follows:
o incrementi((x1,...,%), D) = ({x1,...,x +1,...,x),D).
o decrement (G, (x1,..., %)) = (G, {x1,. .., xk +1,. ..,).
o value(G, D) £ value(G) — value(D).
Wouldn't it be possible to do the product of two CRDTs so we don't need to redefine all the

operations?

Product of CRDTs

Let A= (L, <a,Sa,valuea, fay,...,fa,) and B = (K, <g, Sg, valueg, fby, ..., fb,).

Product of CRDTs

We have A x B such that:

e The lattice-theoretic operations are inherited from the Cartesian product.

e Each monotone function fa; : A — A and fb; : B — B are extended to be applied pairwise
on each component:

o fa'i(x,y) 2 (fai(x),y)
o i(x,y) £ (x, i(y))

e S =54 x Sg and value(x, y) = (valuea(x), valueg(x)).

Does this definition work to obtain PN-Counter?

Product Definition: Positive-Negative Counter (PN-Counter)

The treatment of value is not very satisfying and we would prefer to redefine it ourselves, so we
can only use the product for combining some operations.

PN-Counter is a CRDT PN = (GC x GC,Z, value) such that:

value(x, y) £ valuegc(x) — valuegc(y)

Alternative Definition

PN-Counter is a CRDT PN’ £ (GC x DC,Z, value) such that:

value(x, y) £ valuegc(x) + valuepc(y)

Exercise: Find another construction to obtain a similar CRDT (e.g., using lexicographic order).
Exercise: Prove that both definitions are equivalent.

Grow-only Set (G-Set)

Grow-Only Set (G-Set)

Based on another lattice construction: the powerset.

Let X be a set of elements. G-Set is a CRDT GS £ (P(X), C,U,{, P(X), value, lookup, add),
where:

e The lattice-theoretic operations are inherited from the powerset construction.
value(S) £ S.

lookup(S,x) & x € S of type lookup : P(X) x X — B with B = {true, false}.
add(S,x) = S U {x}.

Grow-Only Set (G-Set)

Based on another lattice construction: the powerset.

Let X be a set of elements. G-Set is a CRDT GS £ (P(X), C,U,{, P(X), value, lookup, add),
where:

e The lattice-theoretic operations are inherited from the powerset construction.

value(S) £ S.
lookup(S,x) & x € S of type lookup : P(X) x X — B with B = {true, false}.
add(S,x) = S U {x}.

Exercise: Prove that lookup, = \S.lookup(S, x) is a monotone function.
Can we have a "decreasing-only set” CRDT?

G-Set was the easy case... How can we remove elements?

Decreasing-Only Set (D-Set)

We store what is not in the set, instead of what is in the set.

Let X be a set of elements. D-Set is a CRDT DS £ (P(X), C,U,, P(X), value, lookup, remove),
where:

e The lattice-theoretic operations are inherited from the powerset construction.
o value(S) £ X\ S.
o lookup(S,x) 2 x ¢ S.

o remove(S,x) £ SU {x}.

Question: Do you foresee any implementation issue?

Two-Phase Set (2P-Set)

Two-Phase Set (2P-Set)

Cartesian product of powerset.

2P-Set is a CRDT TPS £ (GS x GS,P(X), value, lookup, add, remove), where:

e The lattice-theoretic operations are inherited from the Cartesian product.
e value(A,R) 2 A\ R.

e lookup((A,R),x) &= x € AAx ¢ R.

e add((A,R),x) £ (AU {x},R).

e remove((A, R),x) £ (A, R U {x}) iff lookup((A, R), x).

We call the set of removed elements R the tombstone set.

e Exercise: Define this CRDT using the decreasing-only set CRDT defined previously.
e Once we delete an element, can we add it again later?

Observed-Remove Set (OR-Set)

Designing a Set CRDT Supporting Multiple Add/Remove

e Sequentially: the sequence add(S,x); remove(S,y); and remove(S,y);add(S,x);
leads to the same result where x € S and y ¢ S (with x # y).

e Therefore, we would like our CRDT to have this convergence property as well!

e But some sequences are not commutative, e.g., add(S,x); remove(S,x); and
remove(S,x);add(S,x);

Principle of Permutation Equivalence

Let P be the precondition, @ and Q' the postconditions and u||u’ the concurrent execution.

{Pru; {Q}N{PI;u{Q} N QR & Q = {Plul|u'{Q}

What to do when @ # Q’? In a concurrent execution it would lead to non-determinism.

Designing a Set CRDT Supporting Multiple Add/Remove

e Sequen (8,%);
leads tq Recovering Determinism for add(S,x) || remove(S,x)

o There! R postconditions:

* But sor e {L €S} (error mark) :

e {x € S} (add wins—next slide)

e {x ¢ S} (remove wins) -

remove

Let P b/e th e {add(S, x) >cik remove(S, x) < x € S} (last writer wins ALl
(Prus{Q (L)
What to do ism.

11

Observed-Remove Set (OR-Set)

e Given n replicas, we assign a unique ID to each of them.

e We count the number of local operations k € N performed on the set.

e Each time we add or remove an element in the set, we stick the unique pair (id, k) € N2
to the element.

e Let UID £ N x N be the set of all unique identifiers.

Exercise: Define the corresponding CRDT.

Observed-Remove Set (OR-Set)

Let gen;(A, T) 2 (i, 1+ max{k € Z | 3x, ((i,k),x) € (AU T)}).

OR-Set is a CRDT ORS £ (P(UID x X)2, <, U, (0, 1), P(X), value, lookup, add, remove):

e (A,)< (A, Th)e (AAUT) C(AAUT)ATLC Ty

(A1, T1) U (A2, T2) 2 (A1 T2) U (A2 \ T1), T1 U Tp).

value(A, T) £ {x € X | Juid, (uid,x) € A}.

lookup((A, T), x) = x € value(A, T).

add;((A, T),x) 2 (AU {(gen;(A, T),x)}, T).

remove;((A, T),x) £ let R = {(uid, x) | (uid,x) € A} in (A\ R, TUR).

Exercise: Prove the order < and the join LI are consistent, i.e. X <Y & XUY =Y.
Exercise: Find a way to define this CRDT without having to redefine yourself the lattice
operations. o

Operation-based CRDTs (Formally)

Causal Order

Causal order is a partial order < on messages such that m; < my if the replica that sent my
did so after receiving my, or if the same replica sent m; before ms.

Replicas that receive messages in causal order means that a replica should not receive a
message my until after it has received all messages m; < m.

Definition of Operation-based CRDT

An operation-based CRDT is a tuple (X, 00, eval, prepare, effect) where:

e Y is a set of states.

e 0% € ¥ is the initial state.

e eval(q,o): read-only evaluation of the query g on state o.

e prepare(o, 0, r): prepares a message m given an operation o by replica r in state o.

e effect(m,o): applies a message m on state o, and returns the result. When convenient,

we write this function as m - o.

Further, to ensure concurrent operations commute, we require that:
ml'(ITIz-O'):mg-(ﬂh'U)

Because operations are not, in general, idempotent, it is essential that an exactly-once
messaging mechanism is used.

15

Operation-based G-Counter

Let (Z,0, eval, prepare, effect) where:

e eval(value,o) = o.
e prepare(add(n), o, r) = add(n).
e effect(add(n),o) = n+o.

Exercise: Define an operation-based grow-only set CRDT.

Operation-based G-Set

Let (P(X),0, eval, prepare, effect) where:

e eval(value,o) =o.

e eval(contains, x,0) = x € 0.
e prepare(add(x), o, r) = add(x).
e cffect(add(x),o0) = {x} Uo.

Distributed Algorithm for Operation-based CRDT

On each replica r, we have the following event-based algorithm:
. state o € X, initially o°
. on operation(o) :
m < prepare(o, 0, r)
o + effect(m,o)

. on receive(m) :
o+ effect(m,o)
. on query(q) :

1
2
3
4
5: Broadcast m to other replicas
6
7
8
9 return eval(q, o)

Note: Messages are assumed to be received in causal order.

18

References

e General Survey: P. S. Almeida, Approaches to Conflict-free Replicated Data Types, ACM
Computing Survey, Sep. 2024.
e On composition of CRDTs:
e Operation-based: M. Weidner, H. Miller, and C. Meiklejohn, Composing and decomposing
op-based CRDTs with semidirect products, POPL 2020.
e State-based: C. Baquero, P. S. Almeida, A. Cunha, and C. Ferreira, Composition in
State-based Replicated Data Types, Bulletin of EATCS 3, no. 123 (2017).

19

