
More Conflict-Free Replicated Data Types

Lattice Theory for Parallel Programming

Pierre Talbot

pierre.talbot@uni.lu

17th October 2025

University of Luxembourg

Definition of State-based CRDT

Definition

A state-based conflict-free replicated data type is a tuple ⟨L,≤,S , value, f1, . . . , fn⟩ where:

• ⟨L,≤,⊔⟩ is a lattice1.

• S is a set of values.

• f1, . . . , fn are monotone and extensive functions over L (extensive: ∀x , x ≤ f (x)).

• value : L→ S returns the value modeled by the CRDT.

1A join semi-lattice to be precise, because we don’t need the meet operation ⊓.

1

Grow-only Counter

G-Counter

Let n be the number of replicas (nodes of the distributed system).

G-Counter is a CRDT GC ≜ ⟨Zn, ≤̇, ⊔̇,⊥,Z, value, increment1, . . . , incrementn⟩, where:

• (x1, . . . , xn) ≤̇ (y1, . . . , yn)⇔ ∀1 ≤ i ≤ n, xi ≤ yi .

• (x1, . . . , xn) ⊔̇ (y1, . . . , yn) ≜ (max(x1, y1), . . . ,max(xn, yn)).

• ⊥ = (0, . . . , 0).

• incrementk(⟨x1, . . . , xn⟩) ≜ ⟨x1, . . . , xk + 1, . . . , xn⟩.
• value(⟨x1, . . . , xn⟩) ≜

∑
1≤i≤n xi .

where incrementk is executed on the k th replica.

Exercise: Try to define a counter that is decreasing.

2

Decrease-only Counter

D-Counter

Let n be the number of replicas (nodes of the distributed system).

D-Counter is a CRDT DC ≜ ⟨Zn,⪯,⋎,Z, value, decrement1, . . . , decrementn⟩, where:

• (x1, . . . , xn) ⪯ (y1, . . . , yn)⇔ ∀1 ≤ i ≤ n, xi ≥ yi .

• (x1, . . . , xn) ⋎ (y1, . . . , yn) ≜ (min(x1, y1), . . . ,min(xn, yn)).

• ⊥ = (0, . . . , 0).

• decrementk(⟨x1, . . . , xn⟩) ≜ ⟨x1, . . . , xk − 1, . . . , xn⟩.
• value(⟨x1, . . . , xn⟩) ≜

∑
1≤i≤n xi .

3

Use-cases of G-Counter in Combinatorial Optimization

We explore a search tree in parallel, and wish to get the optimal solution.

• Branch-and-Bound : the replicas share a common objective bound, either an increasing or

decreasing counter (if maximization or minimization problem).

• Statistics: the number of nodes explored in total, number of solutions, number of failed

nodes,

4

Positive-Negative Counter (PN-Counter)

4

Positive-Negative Counter (PN-Counter)

PN-Counter

Let n be the number of replicas (nodes of the distributed system) and I = {1, . . . , n}
PN-Counter is a CRDT PN ≜ ⟨Zn × Zn, ≤̈, ⊔̈, ⊥̈,Z, value, {increment i}i∈I , {decrement i}i∈I ⟩,
where:

• The lattice-theoretic operations are inherited from the Cartesian product.

• The monotone functions are extended as follows:

• incrementk(⟨x1, . . . , xn⟩,D) ≜ (⟨x1, . . . , xk + 1, . . . , xn⟩,D).

• decrementk(G , ⟨x1, . . . , xn⟩) ≜ (G , ⟨x1, . . . , xk + 1, . . . , xn⟩).
• value(G ,D) ≜ value(G)− value(D).

Wouldn’t it be possible to do the product of two CRDTs so we don’t need to redefine all the

operations?

5

Product of CRDTs

Let A = ⟨L,≤A, SA, valueA, fa1, . . . , fan⟩ and B = ⟨K ,≤B , SB , valueB , fb1, . . . , fbn⟩.

Product of CRDTs

We have A× B such that:

• The lattice-theoretic operations are inherited from the Cartesian product.

• Each monotone function fai : A→ A and fbi : B → B are extended to be applied pairwise

on each component:

• fa′ i (x , y) ≜ (fai (x), y)

• fb′
i (x , y) ≜ (x , fbi (y))

• S = SA × SB and value(x , y) = (valueA(x), valueB(x)).

Does this definition work to obtain PN-Counter?

6

Product Definition: Positive-Negative Counter (PN-Counter)

The treatment of value is not very satisfying and we would prefer to redefine it ourselves, so we

can only use the product for combining some operations.

PN-Counter

PN-Counter is a CRDT PN ≜ ⟨GC × GC ,Z, value⟩ such that:

value(x , y) ≜ valueGC (x)− valueGC (y)

Alternative Definition

PN-Counter is a CRDT PN ′ ≜ ⟨GC × DC ,Z, value⟩ such that:

value(x , y) ≜ valueGC (x) + valueDC (y)

Exercise: Find another construction to obtain a similar CRDT (e.g., using lexicographic order).

Exercise: Prove that both definitions are equivalent.
7

Grow-only Set (G-Set)

7

Grow-Only Set (G-Set)

Based on another lattice construction: the powerset.

G-Set

Let X be a set of elements. G-Set is a CRDT GS ≜ ⟨P(X),⊆,∪, ∅,P(X), value, lookup, add⟩,
where:

• The lattice-theoretic operations are inherited from the powerset construction.

• value(S) ≜ S .

• lookup(S , x) ≜ x ∈ S of type lookup : P(X)× X → B with B = {true, false}.

• add(S , x) ≜ S ∪ {x}.

• Exercise: Prove that lookupx ≜ λS .lookup(S , x) is a monotone function.

• Can we have a ”decreasing-only set” CRDT?

• G-Set was the easy case... How can we remove elements?

8

Grow-Only Set (G-Set)

Based on another lattice construction: the powerset.

G-Set

Let X be a set of elements. G-Set is a CRDT GS ≜ ⟨P(X),⊆,∪, ∅,P(X), value, lookup, add⟩,
where:

• The lattice-theoretic operations are inherited from the powerset construction.

• value(S) ≜ S .

• lookup(S , x) ≜ x ∈ S of type lookup : P(X)× X → B with B = {true, false}.

• add(S , x) ≜ S ∪ {x}.

• Exercise: Prove that lookupx ≜ λS .lookup(S , x) is a monotone function.

• Can we have a ”decreasing-only set” CRDT?

• G-Set was the easy case... How can we remove elements?

8

Decreasing-Only Set (D-Set)

We store what is not in the set, instead of what is in the set.

D-Set

Let X be a set of elements. D-Set is a CRDT DS ≜ ⟨P(X),⊆,∪, ∅,P(X), value, lookup, remove⟩,
where:

• The lattice-theoretic operations are inherited from the powerset construction.

• value(S) ≜ X \ S .

• lookup(S , x) ≜ x /∈ S .

• remove(S , x) ≜ S ∪ {x}.

Question: Do you foresee any implementation issue?

9

Two-Phase Set (2P-Set)

9

Two-Phase Set (2P-Set)

Cartesian product of powerset.

2P-Set

2P-Set is a CRDT TPS ≜ ⟨GS × GS ,P(X), value, lookup, add , remove⟩, where:

• The lattice-theoretic operations are inherited from the Cartesian product.

• value(A,R) ≜ A \ R.
• lookup((A,R), x) ≜ x ∈ A ∧ x /∈ R.

• add((A,R), x) ≜ (A ∪ {x},R).
• remove((A,R), x) ≜ (A,R ∪ {x}) iff lookup((A,R), x).

We call the set of removed elements R the tombstone set.

• Exercise: Define this CRDT using the decreasing-only set CRDT defined previously.

• Once we delete an element, can we add it again later?

10

Observed-Remove Set (OR-Set)

10

Designing a Set CRDT Supporting Multiple Add/Remove

• Sequentially: the sequence add(S,x); remove(S,y); and remove(S,y);add(S,x);

leads to the same result where x ∈ S and y /∈ S (with x ̸= y).

• Therefore, we would like our CRDT to have this convergence property as well!

• But some sequences are not commutative, e.g., add(S,x); remove(S,x); and

remove(S,x);add(S,x);

Principle of Permutation Equivalence

Let P be the precondition, Q and Q ′ the postconditions and u∥u′ the concurrent execution.

{P}u; u′{Q} ∧ {P}u′; u{Q ′} ∧ Q ⇔ Q ′ ⇒ {P}u∥u′{Q}

What to do when Q ̸= Q ′? In a concurrent execution it would lead to non-determinism.

Recovering Determinism for add(S,x) || remove(S,x)

Possible choices of postconditions:

• {⊥ ∈ S} (error mark)

• {x ∈ S} (add wins—next slide)

• {x /∈ S} (remove wins)

• {add(S , x) >CLK remove(S , x)⇔ x ∈ S} (last writer wins
(LWW))

11

Designing a Set CRDT Supporting Multiple Add/Remove

• Sequentially: the sequence add(S,x); remove(S,y); and remove(S,y);add(S,x);

leads to the same result where x ∈ S and y /∈ S (with x ̸= y).

• Therefore, we would like our CRDT to have this convergence property as well!

• But some sequences are not commutative, e.g., add(S,x); remove(S,x); and

remove(S,x);add(S,x);

Principle of Permutation Equivalence

Let P be the precondition, Q and Q ′ the postconditions and u∥u′ the concurrent execution.

{P}u; u′{Q} ∧ {P}u′; u{Q ′} ∧ Q ⇔ Q ′ ⇒ {P}u∥u′{Q}

What to do when Q ̸= Q ′? In a concurrent execution it would lead to non-determinism.

Recovering Determinism for add(S,x) || remove(S,x)

Possible choices of postconditions:

• {⊥ ∈ S} (error mark)

• {x ∈ S} (add wins—next slide)

• {x /∈ S} (remove wins)

• {add(S , x) >CLK remove(S , x)⇔ x ∈ S} (last writer wins
(LWW))

11

Observed-Remove Set (OR-Set)

Intuitions

• Given n replicas, we assign a unique ID to each of them.

• We count the number of local operations k ∈ N performed on the set.

• Each time we add or remove an element in the set, we stick the unique pair (id , k) ∈ N2

to the element.

• Let UID ≜ N× N be the set of all unique identifiers.

Exercise: Define the corresponding CRDT.

12

Observed-Remove Set (OR-Set)

Let geni (A,T) ≜ (i , 1 + max{k ∈ Z | ∃x , ((i , k), x) ∈ (A ∪ T)}).

OR-Set

OR-Set is a CRDT ORS ≜ ⟨P(UID× X)2,≤,⊔, (∅, ∅),P(X), value, lookup, add , remove⟩:

• (A1,T1) ≤ (A2,T2)⇔ (A1 ∪ T1) ⊆ (A2 ∪ T2) ∧ T1 ⊆ T2.

• (A1,T1) ⊔ (A2,T2) ≜ ((A1 \ T2) ∪ (A2 \ T1),T1 ∪ T2).

• value(A,T) ≜ {x ∈ X | ∃uid , (uid , x) ∈ A}.
• lookup((A,T), x) ≜ x ∈ value(A,T).

• add i ((A,T), x) ≜ (A ∪ {(geni (A,T), x)},T).

• remove i ((A,T), x) ≜ let R = {(uid , x) | (uid , x) ∈ A} in (A \ R,T ∪ R).

Exercise: Prove the order ≤ and the join ⊔ are consistent, i.e. X ≤ Y ⇔ X ⊔ Y = Y .

Exercise: Find a way to define this CRDT without having to redefine yourself the lattice

operations.
13

Operation-based CRDTs (Formally)

13

Causal Order

Definition

Causal order is a partial order ≺ on messages such that m1 ≺ m2 if the replica that sent m2

did so after receiving m1, or if the same replica sent m1 before m2.

Replicas that receive messages in causal order means that a replica should not receive a

message m2 until after it has received all messages m1 ≺ m2.

14

Definition of Operation-based CRDT

An operation-based CRDT is a tuple ⟨Σ, σ0, eval , prepare, effect⟩ where:

• Σ is a set of states.

• σ0 ∈ Σ is the initial state.

• eval(q, σ): read-only evaluation of the query q on state σ.

• prepare(o, σ, r): prepares a message m given an operation o by replica r in state σ.

• effect(m, σ): applies a message m on state σ, and returns the result. When convenient,

we write this function as m · σ.

Further, to ensure concurrent operations commute, we require that:

m1 · (m2 · σ) = m2 · (m1 · σ)

Because operations are not, in general, idempotent, it is essential that an exactly-once

messaging mechanism is used.

15

Operation-based G-Counter

G-Counter

Let ⟨Z, 0, eval , prepare, effect⟩ where:

• eval(value, σ) = σ.

• prepare(add(n), σ, r) = add(n).

• effect(add(n), σ) = n + σ.

Exercise: Define an operation-based grow-only set CRDT.

16

Operation-based G-Set

G-Set

Let ⟨P(X), ∅, eval , prepare, effect⟩ where:

• eval(value, σ) = σ.

• eval(contains, x , σ) = x ∈ σ.

• prepare(add(x), σ, r) = add(x).

• effect(add(x), σ) = {x} ∪ σ.

17

Distributed Algorithm for Operation-based CRDT

On each replica r , we have the following event-based algorithm:

1: state σ ∈ Σ, initially σ0

2: on operation(o) :

3: m← prepare(o, σ, r)

4: σ ← effect(m, σ)

5: Broadcast m to other replicas

6: on receive(m) :

7: σ ← effect(m, σ)

8: on query(q) :

9: return eval(q, σ)

Note: Messages are assumed to be received in causal order.

18

References

• General Survey: P. S. Almeida, Approaches to Conflict-free Replicated Data Types, ACM

Computing Survey, Sep. 2024.

• On composition of CRDTs:

• Operation-based: M. Weidner, H. Miller, and C. Meiklejohn, Composing and decomposing

op-based CRDTs with semidirect products, POPL 2020.

• State-based: C. Baquero, P. S. Almeida, A. Cunha, and C. Ferreira, Composition in

State-based Replicated Data Types, Bulletin of EATCS 3, no. 123 (2017).

19

