Parallel Lattice Programming

LATTICE THEORY FOR PARALLEL PROGRAMMING

Pierre Talbot
pierre.talbot@uni.lu

22nd October 2025, 29th October 2025

University of Luxembourg

UNIVERSITE DU
LUXEMBOURG

What in this presentation?

We are going to overview two parallel programming models:

1. Pessimistic Parallel Programming (state of the art).

2. Optimistic Parallel Programming (contribution).

Characteristics of our model

e Lock-free and correct.
e Based on fixpoint over lattices.

e Useful for programming parallel constraint solvers.

Pessimistic Parallel Programming

Running example: parallel maximum

Each thread computes its local max (map), then we compute the max of
all local max (reduce).

e Map:

8 2 10 23 2 7 91 1 0 0 42 11 8 1 32

v v ~

Thread 1, my =23 Thread 2, my =91 Thread 3, ms = 42

e Reduce: max([23,91,42]) = 91.

Running example: parallel maximum

Each thread computes its local max (map), then we compute the max of
all local max (reduce).

e Map:

8 2 10 23 2 7 91 1 0 0 42 11 8 1 32

v v ~

Thread 1, m; = 23 Thread 2, m, = 01 T & i =42
e Reduce: max([23,91,42]) = 91.

Sequential bottleneck: With 100 elements (10 threads), the reduce
step takes as much time as the map step.

How to program the reduce step in parallel?

Parallel max

/*x Suppose as many threads as elements in ‘data‘. x/
void max(int tid, const int* data, int* m) {
if (dataltid] > *m) {
*m = datal[tid];
}
}

Then you run:

*m = MIN INT;
max (0, data, m) || ... || max(n-1, data, m)

where p || q is the parallel composition.

Parallel max

/*x Suppose as many threads as elements in ‘data‘. x/
void max(int tid, const int* data, int* m) {
if (dataltid] > *m) {
*m = datal[tid];
}
}

Then you run:

*m = MIN INT;
max (0, data, m) || ... || max(n-1, data, m)

where p || q is the parallel composition.

Good? No! Data-race.

Parallel max fixed!?

/*x Suppose as many threads as elements in ‘data‘. */
void max(int tid, const int* data, int* m) {
if (datal[tid] > *m) {
lock(m) {
*m = datal[tid];
}

Parallel max fi

/*x Suppose as many threads as elements in ‘data‘. */
void max(int tid, const int* data, int* m) {
if (datal[tid] > *m) {
lock(m) {
*m = datal[tid];
}
}
}

Good? No!

Can produce wrong results.

Parallel max fixed again!?

/*x Suppose as many threads as elements in ‘data‘. x/
void max(int tid, const int* data, int* m) {
lock(m) {
if(dataltid] > *m) {
*m = datal[tid];
}
}
}

Parallel max fixed again!?

/*x Suppose as many threads as elements in ‘data‘. x/
void max(int tid, const int* data, int* m) {
lock(m) {
if(dataltid] > *m) {
*m = datal[tid];
}
}
}

Good? Yes!
But our “parallel” algorithm is now

sequential.

Atomics to the rescue (?)

C++26 atomics can unlock lock-free programming for better efficiency :)

void max(int tid, const int* data, std::atomic<int>& m) {
m.fetch_max(data[tid]);
}

Atomics to the rescue (?)

C++26 atomics can unlock lock-free programming for better efficiency :)

void max(int tid, const int* data, std::atomic<int>& m) {
m.fetch_max(data[tid]);
}

Atomic operations are (much) slower than traditional
operations.

Reduction in CUDA

Chapter 10 in book “Programming Massively Parallel Processors: A
Hands-on Approach™.

Reduction
And minimizing divergence

Chapter Outline

10.1 211
10.2 ion trees 213
10.3 Asimple ion kernel 217
10.4 Minimizing control di 219
10.5 Minimizing memory di 223
10.6 Minimizing global memory accesses 225

10.7 Hierarchical reduction for arbitrary input length ...
10.8 Thread coarsening for reduced overhead
10.9 Summary

Reduction in CUDA

Chapter 10 in book “Programming Massively Parallel Processors: A
Hands-on Approach”.

ead 0
ead 1
ead 2
ead3
ead 4

ead5
ead 6
ead 7

Initial load from global memory

Subsequent writes and reads
continue in shared memory

Not easy, and eventually, some threads inactive.

The problem with threads

Multithreading programming is pessimistic.

For a data race that happens once in million instructions, this model:

e Makes parallel programming painful and difficult.
e Slows down computation.

e Prevents us from thinking with a true parallel mindset.

Optimistic Parallel Programming

Let’s be optimistic

Instead of being afraid of data races, let's welcome them as part of the
programming model itself.

void max(int tid, const int* data, int* m) {
if (dataltid] > *m) {
*m = data[tid];
T
}

What happens in case of a data race?

e Suppose two threads with data = [1, 2].
e |f a data race occurs, *m ==

e But if we run max again, then we must obtain *m == 2.

Let's do extra work only when data races occur
(optimistic)

In case of n data races, we run the algorithm n + 2 times:

int old = *m + 1;
while(old != *m) {
old = *m;
max(0, data, m) || ... || max(n-1, data, m);

}

This is called the fixpoint loop.

10

Interlude: atomicity of load and store...

At start, suppose x,y = 0.

T1 T2
X < 512 x 1

What are the possible outcomes?

11

Interlude: atomicity of load and store...

At start, suppose x,y = 0.

T1 T2
X < 512 x 1

What are the possible outcomes? x =512, x =1 and... x =513,

Really? 5137

Assignment is not necessarily atomic. View x as an array of two bytes x[0]x[1]:

T2: x[0] < 0O
Ti: x[0] < 1 (x = 512)
T2: x[1] «+ 0
Ti: x[1] + 1 (x = 513)

But in practice, most architectures (x86, x64, ARM, ...) will atomically
load and store 32 bits values (if correctly aligned).

11

Fixing optimistic max in parallel

Therefore, we still need atomic load and store:

void max(int tid, const int* data, std::atomic<int>& m) {
if (dataltid] > m.load()) {
m.store(data[tid]);
}
}

Note that, we only need atomic load and store, every other operation can
be performed non-atomically.

12

Relaxed memory consistency is enough here: the changes are eventually

seen by everybody.

void max(int tid, const int* data, std::atomic<int>& m) {
if (dataltid] > m.load(std::memory_order_relaxed)) {
m.store(data[tid], std::memory_order_relaxed);
}
}

13

Optimization: Relaxed Memory Consistency

Relaxed memory consistency is enough here: the changes are eventually
seen by everybody.

void max(int tid, const int* data, std::atomic<int>& m) {
if (dataltid] > m.load(std::memory_order_relaxed)) {
m.store(data[tid], std::memory_order_relaxed);
}
}

How to design such algorithms? What properties do
we need?

13

Concurrent Constraint Programming

Concurrent constraint programming (CCP) is a process calculus
introduced in the eighties!.
Two main operations: ask and tell.

Ask X>57

<\
Tell £<4

Conceptual idea: allow to compute with partial information; replace the
“Von Neumann" memory model by a constraint store.

LV. A. Saraswat and M. Rinard, Concurrent constraint programming (POPL-89)

14

Concurrent constraint programming (CCP) is a process calculus
introduced in the eighties!.

Two main operations: ask and tell.

Ask X>57

\
Tell Z<4

Conceptual idea: allow to compute with partial information; replace the
“Von Neumann" memory model by a constraint store.

Formally, what is the constraint store, tell and ask?

LV. A. Saraswat and M. Rinard, Concurrent constraint programming (POPL-89)

14

Syntax of First-Order Logic (FOL)

Let S = (X, F, P) be a first-order signature where X set of variables, F
set of function symbols and P set of predicate symbols.

(t) = x variable x € X
| f(t,...,t) function f € F
(p) == p(t,...,t) predicate p € P
| —p negation
| pop connector o € {\,V,=, <}
| 3Ix, ¢ existential quantifier
| Vx, ¢ universal quantifier

A theory is a set of formulas without free variables.

15

Constraint System

A constraint system is a tuple CS = (S, A) where S is a first-order
structure and A is a (consistent) theory.

e The store of constraints is a set of formula C = {c,..., cy}.
e tell(c) adds the constraint c to the store C (simple set union).

e ask(c) checks whether c can be deduced from C using the theory A.

16

Constraint System

A constraint system is a tuple CS = (S, A) where S is a first-order
structure and A is a (consistent) theory.

e The store of constraints is a set of formula C = {c,..., cy}.
e tell(c) adds the constraint c to the store C (simple set union).

e ask(c) checks whether c can be deduced from C using the theory A.

Let C = {x > y,y > z,y = 2} under the standard theory of arithmetic.

o ask(x >2)7

Constraint System

A constraint system is a tuple CS = (S, A) where S is a first-order
structure and A is a (consistent) theory.

e The store of constraints is a set of formula C = {c,..., cy}.
e tell(c) adds the constraint c to the store C (simple set union).

e ask(c) checks whether c can be deduced from C using the theory A.

Let C = {x > y,y > z,y = 2} under the standard theory of arithmetic.

o ask(x >2) 7 true.
e ask(x <2)7?

Constraint System

A constraint system is a tuple CS = (S, A) where S is a first-order
structure and A is a (consistent) theory.
e The store of constraints is a set of formula C = {c,..., cy}.
e tell(c) adds the constraint c to the store C (simple set union).

e ask(c) checks whether c can be deduced from C using the theory A.

Let C = {x > y,y > z,y = 2} under the standard theory of arithmetic.

o ask(x >2) 7 true.
e ask(x < 2) 7 false.

e ask(x =2z)7?

Constraint System

A constraint system is a tuple CS = (S, A) where S is a first-order
structure and A is a (consistent) theory.
e The store of constraints is a set of formula C = {c,..., cy}.
e tell(c) adds the constraint c to the store C (simple set union).

e ask(c) checks whether c can be deduced from C using the theory A.

Let C = {x > y,y > z,y = 2} under the standard theory of arithmetic.

o ask(x >2) 7 true.
e ask(x < 2) 7 false.
e ask(x = z) ? false (we don't know yet! But possible in the future.)

ask(c) is true iff the formula (A cc ¢) = c is also true. We write
¢ Ea d (entailment) to say d can be deduced from c.

Syntax of CCP

Let x,x1,...,Xx, € X be variables, c, ¢y, ... be constraints, p a predicate

name.

(P, Q) =) i ask(ci) 7 P; sum statement
| tell(c) tell statement
| 3Ix, P local statement
| P @ parallel composition
| P, xn) predicate call

(A, B) == p(x1,...,x,) =P predicate definition
| AB list of predicates

17

Syntax of CCP

Let x,x1,...,Xx, € X be variables, c, ¢y, ... be constraints, p a predicate

name.

(P, Q) =) i ask(ci) 7 P; sum statement
| tell(c) tell statement
| 3Ix, P local statement
| P @ parallel composition
| P, xn) predicate call

(A, B) = p(x1,...,%x5) =P predicate definition
| AB list of predicates

HX) y? Z?

ask(y = 1) ? tell(z > 10)
|| ((ask(x =0) ? tell(y = 1)) + (ask(x =1) ? tell(y = 2)))

Exercise: define a CCP predicate max(x, y, z) such that z = max(x,y). 7

Sketch of Semantics

e A configuration is a pair (P, C) where P is a CCP process to

execute, and C is a store of constraint.
e A “step of execution” is given by a relation (P, C) — (P, C’).
TELL
(tell(c), C) — (tell(c), C U{c})
PAR-LEFT
(P,C) — (P, C")
(Pl @C)—(P|QC)

PAR-RIGHT
(Q,C) = (@, C")
(Pl @C)— (Pl Q,C)

e Monotonicity: — is monotone over the store of constraints, in
particular it means:

e If ask(c) is true in a store C then it is true in every store C’ such
that C C C'.

e Extensive: — is extensive over the store of constraints (we cannot
remove information).

e Closure operator: —* is a closure operator over the store.?

e Restartable: Suppose we perform a partial execution
(P,C) — ... — (P, (C’), then we can restart the execution from
(P, C’") (and obtain the same result).

2Supposing the branches of the sum are all disjoints—called determinate CCP.

19

Herbrand Constraint System

The following constraint system H = (S, A) is the basis of logic programming,

also known as finite tree CS.

e S = (X, F,P) where F is the infinite set of all function symbols, and
P = {=} (only equality).

e A is given by Clark’s equality theory®:

f(Xt,.o oy Xn) = F(Y1,- oy ¥n) = X1=Y1 A ... AXn = Y.

f(x1,...,x:) = g(y1,-..,ym) = false where f # gV n # m.

x=1f(...x...) = false

3Clark, K. L. (1977). Negation as failure. In Logic and databases. 20

Herbrand Constraint System

The following constraint system H = (S, A) is the basis of logic programming,

also known as finite tree CS.

e S = (X, F,P) where F is the infinite set of all function symbols, and
P = {=} (only equality).
e A is given by Clark’s equality theory®:
o f(xt,...,Xn) =F(Y1,-- s ¥n) = X1=Y1 A ... AXn = Y.
o f(xi,...,x:)=g(y1,...,ym) = false where f # gV n# m.
o x=1f(...x...)= false

Set r to true if x occurs in the list /.

contains(l, x, r) = 3h, t,
ask(l = list(h,t) A h = x) ? tell(r = true)
+ ask(l = list(h, t) A =(h = x)) ? contains(t,x,r)
+ ask(l = empty) ? tell(r = false)

Exercise: Define merge sort (and use the parallel combinator).

3Clark, K. L. (1977). Negation as failure. In Logic and databases.

Parallel CCP

Parallel Concurrent Constraint Programming (PCCP)

Observation: CCP lacks a proper connection to parallel architecture, and had
limited impact despite a beautiful theory.

We worked on that by simplifying the language (no recursion) and using lattice
to define constraint system*.

4P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU (AAAI
2022)

21

Parallel Concurrent Constraint Programming (PCCP)

Observation: CCP lacks a proper connection to parallel architecture, and had
limited impact despite a beautiful theory.

We worked on that by simplifying the language (no recursion) and using lattice
to define constraint system*.

Syntax of PCCP

Let x,y,y1,...,yn € X be variables, L a lattice, f a monotone function, and
b a Boolean variable of type ({true, false}, <):

(P, Q) = if b then P ask statement
x = f(y1, ... ¥n) tell statement

| 3IxL, P local statement

| Pll@ parallel composition

4P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU (AAAI
2022)

Examples: Minimum and Constraint

Let ZUB the lattice of increasing integers, and ZLB the lattice of

decreasing integers.

dm:ZUB, m<xi || ... || m < x, (unfolded for-loop)

x + y < c constraint

Suppose the variables x and y are defined by four variables x/, xu, yl, yu
modelling the intervals [x/, xu] and [y/, yu].

[x+y<c] & xu<c—yl|yus+c—xl

(see lecture on “abstract satisfaction”).

Denotational Semantics

e A PCCP process is a reductive and monotone function over a Cartesian
product Store = Ly X ... x L, storing the values of all local variables.

e Since we do not have recursion, we know at compile-time the number of
variables.

e Let Proc be the set of all PCCP processes.

23

Denotational Semantics

e A PCCP process is a reductive and monotone function over a Cartesian
product Store = Ly X ... x L, storing the values of all local variables.

e Since we do not have recursion, we know at compile-time the number of
variables.

e Let Proc be the set of all PCCP processes.

Denotational Semantics

We define a function D : Proc — (Store — Store):

D(x + f(y1,-,¥n)) 2 As.s[x = s(x) 1 F(s(y1), -, s(yn))]
D(if b then P) 2 Xs.(s(b)? D(P)(s):s)
D(P || Q) = D(P)ND(Q)

Executing the program: gfp D(P).

Sequential Computation = Parallel Computation

We obtain the same result if we execute P in parallel or if we replace all

parallel || by a sequential operator ; (a transformation we write seq P)
defined as follows:

D(P; Q) o} D(Q) o D(P)

Let fix f be the set of fixpoints of a function 7.

Theorem (Equivalence Between Sequential and Parallel Operators)

fix D(seq P) = fix D(P)

Did We Cheat Using Math?...

OK Ok, we use a “parallel operator”, but it is not really executed in
parallel on a machine?

Also: D(P || Q) £ D(P) M D(Q), by unfolding this mathematics
definition we have:

What's the problem?

25

Did We Cheat Using Math?...

OK Ok, we use a “parallel operator”, but it is not really executed in
parallel on a machine?

Also: D(P || Q) £ D(P) M D(Q), by unfolding this mathematics
definition we have:

What's the problem?

We have copied the store!!
Not very “Von Neumann Architecture”-friendly.

25

Operational Semantics

Let’s go to a lower-level of semantics, closer to the machine.

Guarded Normal Form (GNF)

We lift all parallel compositions at top-level, and obtain a set of
guarded commands of the form {by,...,b,} = x < f(y1,..., Ym). The
transformation is as follows:

gnf (A, x < (1, ¥n)) £ {A=x <+ f(y1,..y¥n)}
gnf(A,if b then P) £ gnf(AU {b},P)
gnf(A, P || Q) £ gnf(A,P)Ugnf(A,Q)

Theorem
fix D(gnf({}, P)) = fix D(P)

Operational Semantics
e A state is a pair (s, G) where s is the store and G a set of guarded
commands.
e The operational semantics of PCCP is defined by a transition
function < between states.

SELECT
({b1,.-. o} = x — F(seym) €6 N\ 's(b)

(5, 6) = (sx = s(x) T F(s(x1), - - s(ym))]; G)

e The execution of a PCCP program is a possibly infinite sequence of
states (s1,G) — ... <= (sp, G) < ...

27

Fairness

Definition (Fairness)

A scheduling strategy is fair if, for each process P € G, it generates

transitions such that:

VieZ, L, j>iA
(sj, G) = (sj41, G) selects the process P

A result of Cousot on chaotic iterations® guarantees that the limit of all
fair scheduling strategies coincide.

It means the order of execution of the parallel processes
doesn't matter!

5P. Cousot, Asynchronous iterative methods for solving a fixed point system of
monotone equations in a complete lattice, Research Report 88, Sep. 1977.

28

Equivalence Denotational and Operational Semantics

We denote by O(P) the function mapping a store s to a store s’, such

that (s, gnf({}, P)) — (s, gnf({}, P)) where — follows a fair scheduling
strategy.

Theorem (Fixpoint Equivalence)

fix D(P) = fix O(P)

OK OK, but can | really execute my program P in parallel on my
machine or math is cheating us again??

29

Equivalence Denotational and Operational Semantics

We denote by O(P) the function mapping a store s to a store s’, such

that (s, gnf({}, P)) — (s, gnf({}, P)) where — follows a fair scheduling
strategy.

Theorem (Fixpoint Equivalence)

fix D(P) = fix O(P)

OK OK, but can | really execute my program P in parallel on my
machine or math is cheating us again??

We are almost there! But to prove it formally, we need to
consider the instructions executed by the processor and not
some abstract "meet” operations.

29

Load/Store Semantics

e Load and store instructions: L a r and S r a where a is the location of a variable
in shared memory and r refers to a thread-local memory location such as a
register.

e We compile a guarded command {b, ..., by} = x < f(y1,..., ym) to a sequence
of loads and stores.

while true:

L by rby; ...; L b, rby;

if rby A... A rb, then
Lyt ryis o5 Loym rtyms
C(f(ryr, -5 rym), rf);
L x rx;

C(rx M rf, 0x);
C(ox < rx, bx);
if bx then

S ox Xx;

e The compilation function C(E, r) compiles the expression E, with its result
stored into r.

e As the corresponding expressions are only defined over thread-local variables,
they do not pose any concurrent threats.

e We note that M and < are compiled according to the lattice-type of the variable 0

X.

Load/Store Operational Semantics

e Let r be a variable local to a thread.
e Let / be a sequence of load/store of a guarded command.
e Let Pl be a set of sequences, representing a program P, that can be
executed in parallel.
e The transition (s, a; /) — (s’, 1) atomically updates the store s with the
instruction a.
LOAD STORE
(s,Larl)—(s[r—a],l) (s,Sral)y—(sla—r]l)
SELECT2
I e Pl (s, 1) = (s',1")
(s, PIy = (s', (PIN{I}) U{I'})

e The rule SELECT?2 is similar to SELECT but executes instructions at a finer

grain.
e Each step of the transition = models an atomic action on the shared
memory.
31

Very weak requirements on the parallel hardware

The load/store operational semantics make the following assumptions on
the memory consistency model and cache coherency protocol:

(ATOM) Load and store instructions must be atomic.
(EC) The caches must eventually become coherent.

(OTA) Values cannot appear out-of-thin-air.

32

Main Results

e If there is a fixpoint reachable in a finite number of steps, we always
reach it.

e We compute the same fixpoint than the sequential program.

Theorem (Soundness)

Let GI be the load/store compilation of a PCCP program P. Then for
any sequence (s, Gl) = ... = (s;, GI'), we have s; > (gfp,, O(P)).

Theorem (Completeness)

Suppose the fixed point os = (gfp,, O(P)) is reachable in a finite
number of steps. Then, 3i €N, (s1,Gl) = ... = (s;,Gl') = ... such
that s; < os. Further, for all j € N, j > i, s; = s;.

Conclusion

C++ Abstraction: Lattice Land Project

lattice-land is a collection of libraries abstracting our parallel model.
It provides various data types and fixpoint loop:

e ZLB, ZUB: increasing/decreasing integers.
e B: Boolean lattices.

VStore: Array (of lattice elements).

e IPC: Arithmetic constraints.

e GaussSeidelIteration: Sequential CPU fixed point loop.
e AsynchronousIteration: GPU-accelerated fixed point loop.
e ...

void max(int tid, const int* data, ZLB& m) {
m.tell(data[tid]);
}

AsynchronousIteration::fixpoint (max) ;

0 https://github.com/lattice-land

34

https://github.com/lattice-land

Conclusion

Data races occur rarely, so we should avoid working so
much to avoid them.

Properties of the model

A Variant of Concurrent Constraint Programming on GPU (AAAI 2022)%.

e Correct: Proofs that P; Q = P||Q, parallel and sequential versions

produce the same results.
e Restartable: Stop the program at any time, and restart on partial data.
e Modular: Add more threads without fear of breaking existing code.

e \Weak memory consistency: Very few requirements on the underlying
memory model = wide compatibility across hardware, unlock

optimization.

Shttp://hyc.io/papers/aaai2022.pdf
35

http://hyc.io/papers/aaai2022.pdf

