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What in this presentation?

We are going to overview two parallel programming models:

1. Pessimistic Parallel Programming (state of the art).

2. Optimistic Parallel Programming (contribution).

Characteristics of our model

• Lock-free and correct.

• Based on fixpoint over lattices.

• Useful for programming parallel constraint solvers.
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Pessimistic Parallel Programming
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Running example: parallel maximum

Each thread computes its local max (map), then we compute the max of

all local max (reduce).

• Map:

3 2 10 23 2 7 91 1 0 0 42 11 8 1 32

Thread 1, m1 = 23 Thread 2, m2 = 91 Thread 3, m3 = 42

• Reduce: max([23, 91, 42]) = 91.

Sequential bottleneck: With 100 elements (10 threads), the reduce

step takes as much time as the map step.

How to program the reduce step in parallel?
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Parallel max

/∗∗ Suppose as many threads as elements in ‘data‘. ∗/
void max(int tid, const int* data, int* m) {

if(data[tid] > *m) {

*m = data[tid];

}

}

Then you run:

*m = MIN INT;

max(0, data, m) || . . . || max(n-1, data, m)

where p || q is the parallel composition.

Good? No! Data-race.
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Parallel max fixed!?

/∗∗ Suppose as many threads as elements in ‘data‘. ∗/
void max(int tid, const int* data, int* m) {

if(data[tid] > *m) {

lock(m) {

*m = data[tid];

}

}

}

Good? No!

Can produce wrong results.
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Parallel max fixed again!?

/∗∗ Suppose as many threads as elements in ‘data‘. ∗/
void max(int tid, const int* data, int* m) {

lock(m) {

if(data[tid] > *m) {

*m = data[tid];

}

}

}

Good? Yes!

But our “parallel” algorithm is now

sequential.

5



Parallel max fixed again!?

/∗∗ Suppose as many threads as elements in ‘data‘. ∗/
void max(int tid, const int* data, int* m) {

lock(m) {

if(data[tid] > *m) {

*m = data[tid];

}

}

}

Good? Yes!

But our “parallel” algorithm is now

sequential.

5



Atomics to the rescue (?)

C++26 atomics can unlock lock-free programming for better efficiency :)

void max(int tid, const int* data, std::atomic<int>& m) {

m.fetch_max(data[tid]);

}

Atomic operations are (much) slower than traditional

operations.
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Reduction in CUDA

Chapter 10 in book “Programming Massively Parallel Processors: A

Hands-on Approach”.
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Reduction in CUDA

Chapter 10 in book “Programming Massively Parallel Processors: A

Hands-on Approach”.

Not easy, and eventually, some threads inactive.
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The problem with threads

Multithreading programming is pessimistic.

For a data race that happens once in million instructions, this model:

• Makes parallel programming painful and difficult.

• Slows down computation.

• Prevents us from thinking with a true parallel mindset.
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Optimistic Parallel Programming
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Let’s be optimistic

Instead of being afraid of data races, let’s welcome them as part of the

programming model itself.

void max(int tid, const int* data, int* m) {

if(data[tid] > *m) {

*m = data[tid];

}

}

What happens in case of a data race?

• Suppose two threads with data = [1, 2].

• If a data race occurs, *m == 1.

• But if we run max again, then we must obtain *m == 2.
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Let’s do extra work only when data races occur
(optimistic)

In case of n data races, we run the algorithm n + 2 times:

int old = *m + 1;

while(old != *m) {

old = *m;

max(0, data, m) || . . . || max(n-1, data, m);

}

This is called the fixpoint loop.
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Interlude: atomicity of load and store...

At start, suppose x,y = 0.

T1 T2

x ← 512 x ← 1

What are the possible outcomes?

x = 512, x = 1 and... x = 513.

Really? 513?

Assignment is not necessarily atomic. View x as an array of two bytes x[0]x[1]:

T2: x[0] ← 0

T1: x[0] ← 1 (x = 512)

T2: x[1] ← 0

T1: x[1] ← 1 (x = 513)

But in practice, most architectures (x86, x64, ARM, ...) will atomically

load and store 32 bits values (if correctly aligned).
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Fixing optimistic max in parallel

Therefore, we still need atomic load and store:

void max(int tid, const int* data, std::atomic<int>& m) {

if(data[tid] > m.load()) {

m.store(data[tid]);

}

}

Note that, we only need atomic load and store, every other operation can

be performed non-atomically.
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Optimization: Relaxed Memory Consistency

Relaxed memory consistency is enough here: the changes are eventually

seen by everybody.

void max(int tid, const int* data, std::atomic<int>& m) {

if(data[tid] > m.load(std::memory_order_relaxed)) {

m.store(data[tid], std::memory_order_relaxed);

}

}

How to design such algorithms? What properties do

we need?
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Concurrent Constraint Programming
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Concurrent constraint programming (CCP) is a process calculus

introduced in the eighties1.

Two main operations: ask and tell.

X = 8
Z > 2

Ask X > 5 ?

Z < 4Tell

Conceptual idea: allow to compute with partial information; replace the

“Von Neumann” memory model by a constraint store.

Formally, what is the constraint store, tell and ask?

1V. A. Saraswat and M. Rinard, Concurrent constraint programming (POPL-89)
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Syntax of First-Order Logic (FOL)

Let S = ⟨X ,F ,P⟩ be a first-order signature where X set of variables, F

set of function symbols and P set of predicate symbols.

⟨t⟩ ::= x variable x ∈ X

| f (t, . . . , t) function f ∈ F

⟨φ⟩ ::= p(t, . . . , t) predicate p ∈ P

| ¬φ negation

| φ ⋄ φ connector ⋄ ∈ {∧,∨,⇒,⇔}
| ∃x , φ existential quantifier

| ∀x , φ universal quantifier

A theory is a set of formulas without free variables.
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Constraint System

A constraint system is a tuple CS = ⟨S ,∆⟩ where S is a first-order

structure and ∆ is a (consistent) theory.

• The store of constraints is a set of formula C = {c1, . . . , cn}.
• tell(c) adds the constraint c to the store C (simple set union).

• ask(c) checks whether c can be deduced from C using the theory ∆.

Example

Let C = {x > y , y > z , y = 2} under the standard theory of arithmetic.

• ask(x > 2) ? true.

• ask(x < 2) ? false.

• ask(x = z) ? false (we don’t know yet! But possible in the future.)

ask(c) is true iff the formula (
∧

φ∈C φ)⇒ c is also true. We write

c ⊨∆ d (entailment) to say d can be deduced from c.
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Syntax of CCP

Let x , x1, . . . , xn ∈ X be variables, c , c1, . . . be constraints, p a predicate

name.

⟨P, Q⟩ ::=
∑

i∈I ask(ci ) ? Pi sum statement

| tell(c) tell statement

| ∃x , P local statement

| P ∥ Q parallel composition

| p(x1, . . . , xn) predicate call

⟨A, B⟩ ::= p(x1, . . . , xn) = P predicate definition

| A B list of predicates

Example

∃x , y , z ,
ask(y = 1) ? tell(z > 10)

∥ ((ask(x = 0) ? tell(y = 1)) + (ask(x = 1) ? tell(y = 2)))

Exercise: define a CCP predicate max(x , y , z) such that z = max(x , y).
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Sketch of Semantics

Definitions

• A configuration is a pair ⟨P,C ⟩ where P is a CCP process to

execute, and C is a store of constraint.

• A “step of execution” is given by a relation ⟨P,C ⟩ → ⟨P ′,C ′⟩.

tell

⟨tell(c),C ⟩ → ⟨tell(c),C ∪ {c}⟩

par-left

⟨P,C ⟩ → ⟨P ′,C ′⟩
⟨P ∥ Q,C ⟩ → ⟨P ′ ∥ Q,C ′⟩

par-right

⟨Q,C ⟩ → ⟨Q ′,C ′⟩
⟨P ∥ Q,C ⟩ → ⟨P ∥ Q ′,C ′⟩
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Main Properties

• Monotonicity : → is monotone over the store of constraints, in

particular it means:

• If ask(c) is true in a store C then it is true in every store C ′ such

that C ⊆ C ′.

• Extensive: → is extensive over the store of constraints (we cannot

remove information).

• Closure operator : →∗ is a closure operator over the store.2

• Restartable: Suppose we perform a partial execution

⟨P,C ⟩ → . . .→ ⟨P ′,C ′⟩, then we can restart the execution from

⟨P,C ′⟩ (and obtain the same result).

2Supposing the branches of the sum are all disjoints—called determinate CCP.
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Herbrand Constraint System

The following constraint system H = ⟨S ,∆⟩ is the basis of logic programming,

also known as finite tree CS.

• S = (X ,F ,P) where F is the infinite set of all function symbols, and

P = {=} (only equality).

• ∆ is given by Clark’s equality theory3:

• f (x1, . . . , xn) = f (y1, . . . , yn)⇒ x1 = y1 ∧ . . . ∧ xn = yn.

• f (x1, . . . , xn) = g(y1, . . . , ym)⇒ false where f ̸= g ∨ n ̸= m.

• x = f (. . . x . . .)⇒ false

Example

Set r to true if x occurs in the list l .

contains(l , x , r) = ∃h, t,
ask(l = list(h, t) ∧ h = x) ? tell(r = true)

+ ask(l = list(h, t) ∧ ¬(h = x)) ? contains(t, x , r)

+ ask(l = empty) ? tell(r = false)

Exercise: Define merge sort (and use the parallel combinator).

3Clark, K. L. (1977). Negation as failure. In Logic and databases. 20
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Parallel CCP
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Parallel Concurrent Constraint Programming (PCCP)

Observation: CCP lacks a proper connection to parallel architecture, and had

limited impact despite a beautiful theory.

We worked on that by simplifying the language (no recursion) and using lattice

to define constraint system4.

Syntax of PCCP

Let x , y , y1, . . . , yn ∈ X be variables, L a lattice, f a monotone function, and

b a Boolean variable of type ⟨{true, false},⇐⟩:

⟨P, Q⟩ ::= if b then P ask statement

| x ← f (y1, ..., yn) tell statement

| ∃x :L, P local statement

| P ∥ Q parallel composition

4P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU (AAAI

2022)
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Examples: Minimum and Constraint

Let ZUB the lattice of increasing integers, and ZLB the lattice of

decreasing integers.

Minimum

∃m : ZUB, m← x1 ∥ . . . ∥ m← xn (unfolded for-loop)

x + y ≤ c constraint

Suppose the variables x and y are defined by four variables xl , xu, yl , yu

modelling the intervals [xl , xu] and [yl , yu].

Jx + y ≤ cK ≜ xu ← c − yl ∥ yu ← c − xl

(see lecture on “abstract satisfaction”).
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Denotational Semantics

• A PCCP process is a reductive and monotone function over a Cartesian

product Store = L1 × . . .× Ln storing the values of all local variables.

• Since we do not have recursion, we know at compile-time the number of

variables.

• Let Proc be the set of all PCCP processes.

Denotational Semantics

We define a function D : Proc → (Store → Store):

D(x ← f (y1, .., yn)) ≜ λs.s[x 7→ s(x) ⊓ f (s(y1), .., s(yn))]

D(if b then P) ≜ λs.L s(b) D(P)(s) s M
D(P ∥ Q) ≜ D(P) ⊓ D(Q)

Executing the program: gfp D(P).
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Sequential Computation = Parallel Computation

We obtain the same result if we execute P in parallel or if we replace all

parallel ∥ by a sequential operator ; (a transformation we write seq P)

defined as follows:

D(P ; Q) ≜ D(Q) ◦ D(P)

Let fix f be the set of fixpoints of a function f .

Theorem (Equivalence Between Sequential and Parallel Operators)

fix D(seq P) = fix D(P)

24



Did We Cheat Using Math?...

OK Ok, we use a “parallel operator”, but it is not really executed in

parallel on a machine?

Also: D(P ∥ Q) ≜ D(P) ⊓ D(Q), by unfolding this mathematics

definition we have:

D(P ∥ Q)(S) = (D(P) ⊓ D(Q))(S)

= D(P)(S) ⊓ D(Q)(S)

What’s the problem?

We have copied the store!!

Not very “Von Neumann Architecture”-friendly.
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Operational Semantics

Let’s go to a lower-level of semantics, closer to the machine.

Guarded Normal Form (GNF)

We lift all parallel compositions at top-level, and obtain a set of

guarded commands of the form {b1, . . . , bn} ⇒ x ← f (y1, ..., ym). The

transformation is as follows:

gnf (A, x ← f (y1, ..., yn)) ≜ {A⇒ x ← f (y1, ..., yn)}
gnf (A, if b then P) ≜ gnf (A ∪ {b},P)
gnf (A,P ∥ Q) ≜ gnf (A,P) ∪ gnf (A,Q)

Theorem

fix D(gnf ({},P)) = fix D(P)

26



Operational Semantics

• A state is a pair ⟨s,G ⟩ where s is the store and G a set of guarded

commands.

• The operational semantics of PCCP is defined by a transition

function ↪→ between states.

select

({b1, . . . , bn} ⇒ x ← f (y1, ..., ym)) ∈ G
∧
i≤n

s(bi )

⟨s,G ⟩ ↪→ ⟨s[x 7→ s(x) ⊓ f (s(y1), . . . , s(ym))],G ⟩

• The execution of a PCCP program is a possibly infinite sequence of

states ⟨s1,G ⟩ ↪→ . . . ↪→ ⟨sn,G ⟩ ↪→ . . ..

27



Fairness

Definition (Fairness)

A scheduling strategy is fair if, for each process P ∈ G , it generates

transitions such that:

∀i ∈ Z, ∃j ∈ Z, j ≥ i ∧
⟨sj ,G ⟩ ↪→ ⟨sj+1,G ⟩ selects the process P

A result of Cousot on chaotic iterations5 guarantees that the limit of all

fair scheduling strategies coincide.

It means the order of execution of the parallel processes

doesn’t matter!

5P. Cousot, Asynchronous iterative methods for solving a fixed point system of

monotone equations in a complete lattice, Research Report 88, Sep. 1977.
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Equivalence Denotational and Operational Semantics

We denote by O(P) the function mapping a store s to a store s ′, such

that ⟨s, gnf ({},P)⟩ ↪→ ⟨s ′, gnf ({},P)⟩ where ↪→ follows a fair scheduling

strategy.

Theorem (Fixpoint Equivalence)

fix D(P) = fix O(P)

OK OK, but can I really execute my program P in parallel on my

machine or math is cheating us again??

We are almost there! But to prove it formally, we need to

consider the instructions executed by the processor and not

some abstract ”meet” operations.

29
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We are almost there! But to prove it formally, we need to

consider the instructions executed by the processor and not

some abstract ”meet” operations.
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Load/Store Semantics

• Load and store instructions: L a r and S r a where a is the location of a variable

in shared memory and r refers to a thread-local memory location such as a

register.

• We compile a guarded command {b1, . . . , bn} ⇒ x ← f (y1, ..., ym) to a sequence

of loads and stores.

while true:

L b1 rb1; . . .; L bn rbn;

if rb1 ∧ . . . ∧ rbn then

L y1 ry1; . . .; L ym rym;

C(f (ry1, . . . , rym), rf );
L x rx;

C(rx ⊓ rf , ox);

C(ox < rx, bx);

if bx then

S ox x;

• The compilation function C(E , r) compiles the expression E , with its result

stored into r .

• As the corresponding expressions are only defined over thread-local variables,

they do not pose any concurrent threats.

• We note that ⊓ and < are compiled according to the lattice-type of the variable

x .
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Load/Store Operational Semantics

• Let r be a variable local to a thread.

• Let I be a sequence of load/store of a guarded command.

• Let PI be a set of sequences, representing a program P, that can be

executed in parallel.

• The transition ⟨s, a; I ⟩↠ ⟨s ′, I ⟩ atomically updates the store s with the

instruction a.

load

⟨s,L a r ; I ⟩↠ ⟨s[r 7→ a], I ⟩
store

⟨s,S r a; I ⟩↠ ⟨s[a 7→ r ], I ⟩

select2
I ∈ PI ⟨s, I ⟩↠ ⟨s ′, I ′⟩

⟨s,PI ⟩ ⇒ ⟨s ′, (PI \ {I}) ∪ {I ′}⟩

• The rule select2 is similar to select but executes instructions at a finer

grain.

• Each step of the transition ⇒ models an atomic action on the shared

memory.
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Very weak requirements on the parallel hardware

The load/store operational semantics make the following assumptions on

the memory consistency model and cache coherency protocol:

(ATOM) Load and store instructions must be atomic.

(EC) The caches must eventually become coherent.

(OTA) Values cannot appear out-of-thin-air.
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Main Results

• If there is a fixpoint reachable in a finite number of steps, we always

reach it.

• We compute the same fixpoint than the sequential program.

Theorem (Soundness)

Let GI be the load/store compilation of a PCCP program P. Then for

any sequence ⟨s1,GI ⟩ ⇒ . . .⇒ ⟨si ,GI ′⟩, we have si ≥ (gfps1 O(P)).

Theorem (Completeness)

Suppose the fixed point os = (gfps1 O(P)) is reachable in a finite

number of steps. Then, ∃i ∈ N, ⟨s1,GI ⟩ ⇒ . . .⇒ ⟨si ,GI ′⟩ ⇒ . . . such

that si ≤ os. Further, for all j ∈ N, j > i , si = sj .
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Conclusion
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C++ Abstraction: Lattice Land Project

lattice-land is a collection of libraries abstracting our parallel model.

It provides various data types and fixpoint loop:

• ZLB, ZUB: increasing/decreasing integers.

• B: Boolean lattices.

• VStore: Array (of lattice elements).

• IPC: Arithmetic constraints.

• GaussSeidelIteration: Sequential CPU fixed point loop.

• AsynchronousIteration: GPU-accelerated fixed point loop.

• . . .

void max(int tid, const int* data, ZLB& m) {

m.tell(data[tid]);

}

AsynchronousIteration::fixpoint(max);

https://github.com/lattice-land
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Conclusion

Data races occur rarely, so we should avoid working so
much to avoid them.

Properties of the model

A Variant of Concurrent Constraint Programming on GPU (AAAI 2022)6.

• Correct: Proofs that P;Q ≡ P||Q, parallel and sequential versions

produce the same results.

• Restartable: Stop the program at any time, and restart on partial data.

• Modular: Add more threads without fear of breaking existing code.

• Weak memory consistency: Very few requirements on the underlying

memory model ⇒ wide compatibility across hardware, unlock

optimization.

6http://hyc.io/papers/aaai2022.pdf
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