Abstract Satisfaction

LATTICE THEORY FOR PARALLEL PROGRAMMING

[]
Pierre Talbot “ Il ' I "
pierre.talbot@uni.lu °

12th November 2025 UNIVERSITE DU
LUXEMBOURG

University of Luxembourg

This lecture in a nutshell!

We present the “fusion” of...

Constraint reasoning + Abstract interpretation
(and lattice theory)

BRUTE-FORCE DYNAMIC '
SOLUTTON: PROGRAMMING SELUNG ON ERAY:
0 (n') ALGORITHMS: o(1)
. 0 (n22")
STILL WORKING
ON YOUR ROUTE?

\
~
SHUT THE
HEW VR

that gives us abstract satisfaction.

This lecture in a nutshell!

We present the “fusion” of...

Constraint reasoning + Abstract interpretation

4)

WHY?

e Combining constraint solvers.
e Constructing sound propagators over complex domains.

e Constraint solving on GPUs.

that gives us abstract satisfaction.

e Abstract Satisfaction (connection between logic and constraint reasoning)
e Abstract Constraint Programming (expressive reasoning framework)

e Abstract Constraint Programming on GPU (efficient reasoning framework)

Abstract Satisfaction

Syntax of First-Order Logic (FOL)

Let S = (X, F, P) be a first-order signature where X set of variables, F set of function symbols
and P set of predicate symbols.

(t) =
|

Let @ the set of well-formed formulas.

(o) =
|
|
|
|

= X

pop
Ix, ¢
Vx, @

variable x € X
function f € F

predicate p € P

negation

connector ¢ € {\,V, =, <}
existential quantifier
universal quantifier

Semantics of FOL

A structure A'is a tuple (U, [, []p) where

1. U is a non-empty set of elements—called the universe of discourse,

2. []£ is a function mapping function symbols f € F with arity n to interpreted functions
[flr: U" = U, and

3. []p is a function mapping predicate symbols p € P with arity n to interpreted predicates
[plp € U".

An assignment is a function X — U mapping variables to values. We denote the set of

assignment by Asn. Let p € Asn, we write p[x — d] the assignment in which we updated the
value of x by d in p.

Entailment

The syntax and semantics are related by the ternary relation A, ¢, called the entailment,
where A is a structure, p € Asn and ¢ € ®. It is read as “the formula ¢ is satisfied by the
assignment p in the structure A". We first give the interpretation function [], for evaluating
the terms of the language:

Ix1, =p(x)ifxe X

[f(t, s)l = [F1F(Ttlps - - s [tal,)

The relation E is defined inductively as follows:

AE, p(tr, ... tn) iff ([tl,, .-, [talp) € [PlP

AE, o1 A\ iff AF, o1 and AF, @2

AF, 01V iff AR, o1 0or AF, ¢

AR, iff AF, ¢ does not hold

AFE,3Ix, ¢ iff there exists d € U such that AF [q ¢
AE,Vx, ¢ iff for all d € U, we have AF [q ¢

Concrete Domain

Given a structure A, we define the concrete interpretation function as:
L[> : & — P(Asn)
[e]’ ={pcAsn| AE, ¢}

A

o We call the concrete domain the lattice D° £ (P(Asn), C) with [.]°.
e A solution of the formula ¢ is an assignment s € [¢]’.
e Example in the theory of standard integer arithmetics (and X = {x, y}):
[x<yAx>0] ={
{x =0,y — 1}
{x— 0,y — 2}

{x—1y—2}

One Problem, Many Commun , Many Formalisms

Many communities emerged to solve the same problem: find p such that Ak, .

BUT they (generally) focus on different fragments of FOL:

Propositional fragment (SAT): (aV b) A (=bV ¢) with a,b,c € {0,1}.

Pseudo-Boolean fragment: Zlgign ¢+ a; < ¢g with a; € {0,1} and ¢; some integers constants.
Linear programming (LP): Z1gi§n c;i x bj < by with b; € R and ¢; some real constants.

Integer linear programming (ILP): Zlgign c;i % bj < by with b; € Z and c¢; some integer constants.

Mixed integer linear programming (MILP): >, ;. ci x bj < by with b; € Z or b; € R and ¢; some integer
or real constants.

Uninterpreted fragment (logic programming).

Discrete constraint programming: (X, D, C) with D; € P¢(Z).
Continuous constraint programming: (X, D, C) with D; € Z(R).
Satisfiability modulo theories (SMT).

One Theory to Rule Them All?

SAT [DHK13]

SMT [DHK14]

Logic programming [Cou20]

Constraint programming (R) [Pel+13]
Constraint programming (Z) [Tal+19] Abstract domains

Linear programming [CH78]

Answer set programming

What is an abstract domain?

It is a lattice with some operations.

What is an abstract domain?
It is a lattice with some operations.
What is a /attice?

A tuple (§,C,,M, L, T) where Sis a
set.

What is an abstract domain?
It is a lattice with some operations.
What is a /attice?

A tuple (S, C, L, M, L, T) where S is a
set.

Example: Interval Lattice

S 2 {labl|a€ZuU{-x},be
ZU{oo},a< b}U{L}

[a,b]C [c,d] < a>cAb<d

T 2[00,]

[a,b] M [c,d] &
[max{a, c}, min{b, d}]

In

[-00,+00]

1,91

. [-00,1] eer [-00,0] +vr [-1,+00]

. [11] . [09]

ENVANVAND

[-1,0] [0,1] ...

- [-1,-1] [0,0] [1,1]

[1,9]

[0,;00] e

. [9,9] ...

NI

Simple Logic of Intervals

o Logic: ® £ x< k|x>k|dAD |V (only 1 variable)

10

Simple Logic of Intervals

o Logic: ® £ x< k|x>k|dAD |V (only 1 variable)
e Abstract interpretation:
o [x < k] & [~o0, k]

o [x> k] £ [k,o0]
o [oAe] £ el N[e]
o [eVeTl £ [elule]

10

Simple Logic of Intervals

o Logic: @ £ x< k|[x>k|DPAD| DV D, (only 1 variable)
e Abstract interpretation:
o [x < k] & [~o0, k]
o [x> k] £ [k,o0]
o [pre] £ [¥lN[@1]
o [eve'l £ [Plul¥]
e Example:
e [(x<10Ax>0)V(x>5)
e [x<10Ax>0]U[x > 5]
o ([x<10]M[x>0])U[x > 9]
e ([—00,10] M0, 00]) U5, 0]
e [0,10] L[5, 0]
e [0, 7]

10

Simple Logic of Intervals

Logic: ® £ x< k|x>k|dAD| DV (only 1 variable)
e Abstract interpretation:
o [x < k] & [~o0, k]

o [x> k] £ [k,o0]

o [ern¢'] £ [Pl N [¢]

o [pve] £ [plUle]
e Example:

e [(x<10Ax>0)V(x>5)

[x <10Ax>0]U[x >5]
([x<10]M[x >0])U[x > 5]

([<o0,10]1 M [0, 00]) U [5, o]

[0,10] U [5, 0]

[0, o]

Soundness: [¢]" C [¢] (compute all solutions).

Completeness: [¢]” O [¢] (compute only solutions).
Intervals are not complete: [x < 10V x > 15] = [—o0, c0] (intervals cannot represent “holes™). 10

What About Multiple Variables?

We lift interval to a function X — [tv mapping variables to intervals where [tv is the interval
lattice.

Now, we can define (with x € X any variable):

o [x < k] £ {x— [—o0, K]}
o [x> k] £ {x+s [k,o0]}.

Example: [x <0Ay > 0] = {x+— [-00,0],y — [0, 00]}.

11

What About Multiple Variables?

We lift interval to a function X — [tv mapping variables to intervals where [tv is the interval
lattice.

Now, we can define (with x € X any variable):

o [x < K]
o [x > K]

{x = [—o0, k]}.
{x — [k, 0]}

lI>

Example: [x <0Ay > 0] = {x+— [-00,0],y — [0, 00]}.

How to compute solutions of more expressive logic?

11

Abstract Constraint Programming

Constraint Programming

Constraint programming: FOL without quantifiers, U = Z and arithmetic constraints.

Declarative paradigm: specify your problem and let the computer solves it for you.

Many applications: scheduling, bin-packing, hardware design, satellite imaging, ...

e Constraint programming is one approach to solve such combinatorial problems.

Other approaches include SAT, linear programming, SMT, MILP, ASP,...

12

5 Stateof the art

Satellite image mosaic

After a query with certain parameters:

N = 30 satellite images

Find the cover with the minimum number
of images (NP-Hard)

Build the mosaic

1Combarro et al., Constraint Model for the Satellite Image Mosaic Selection Problem, CP 2023

1

13

Constraint model of satellite imaging in MiniZinc:

O @& 5406 @ & .

New model Open Save Copy Cut Paste Redo Shift left Shift right Run

"HH

satellite.mzn (&) satellite1.dzn [}

41int: universe;

5

6set of int: IMAGES = 1..images;

7set of int: UNIVERSE = 1..universe;

8

garray[IMAGES] of set of int: sets;

10 array[IMAGES] of int: costs;

11

12 constraint forall(u in UNIVERSE)(

13 exists(i in IMAGES)(taken[i] /\ u in sets[i]));
14

15 array[IMAGES] of var bool: taken;

16

17 solve minimize sum(i in IMAGES)(costs[i] * taken[i]);

Output
Hide all | | dzn | default

« Running satellite.mzn, satellitel.dzn
taken = [true, true, false, true, true, false];

Finished in 114msec.

Solver configuratior

Gecode 6.3.0

14

Constraint Network

Constraint Network

Let X be a finite set of variables and C be a finite set of constraints.
A constraint network is a pair P = (d, C) such that d € X — [tv is the domain of the
variables where [tv is the set of intervals.

Note: It is just a "format” to represent quantifier-free logical formulas where variables have
bounded domains.

({x= 0.2,y = [2,3]}, {x <y —-1})
A solution is {x — 0,y — 2}.

Constraints with Multiple Variables

e We already have: [x < k] £ {x — [~oo, k]}.
o Also: [x = k] & {x~ [k, K]}

How to interpret [x = y]?

16

Constraints with Multiple Variables

e We already have: [x < k] £ {x — [~oo, k]}.
o Also: [x = k] & {x~ [k, K]}

How to interpret [x = y]?

e Unfortunately, without more information on x and y, we must set
[x=y] £ {x+ [-00,0],y > [~00,00]}, which is the same than ignoring the constraint...

16

Constraints with Multiple Variables

e We already have: [x < k] £ {x — [~oo, k]}.
o Also: [x = k] £ {x — [k, k]}.

How to interpret [x = y]?

e Unfortunately, without more information on x and y, we must set
[x=y] £ {x+ [-00,0],y > [~00,00]}, which is the same than ignoring the constraint...

Solution: give more information to the interpretation function.
o Z[.] € ® x (X — Itv) — (X — [tv)
o I[x=yld = {x = d(x) M d(y),y = d(x) M d(y)}

Example: Let d = {x — [0,5],y — [5,10]}, then Z[x = y]d = {x — [5,5],y — [5,5]}.

16

How to Deal with Conjunction?

e Before, we had [A ¢'] £ [o] N [¢].

e Now, we can lift this function to

I[e A¢'ld 2 I[pld NI[¢']d

17

How to Deal with Conjunction?

e Before, we had o A ¢'] £ [¢] N [¢']-
e Now, we can lift this function to

I[e A¢'ld 2 I[pld NI[¢']d

Problem: d must be copied... inefficient

17

How to Deal with Conjunction?

e Before, we had [A ¢'] £ [o] N [¢].

e Now, we can lift this function to

I[e A¢'ld 2 I[pld NI[¢']d

Problem: d must be copied... inefficient

e Instead, we can use functional composition:

Ilp A¢ld £ (Z[e] o Z[¢'T)d

17

Computing Solutions of Constraint Network

A constraint network (d, C) is a conjunctive collection of constraints. So we can compute the
set of solutions using:

IflanhaA...Ac]| =TI[a] oZ[c] o...oZ]ch]

Example: Let (d,{x = y,y = z}) be a constraint network with
d={x—1[2,2],y — [1,2],z+ [0,2]}, then:

Ix=y ANy =Zz]d
= ([Zlx=yleoZIly =2])d
= I[x =y](Zly = z](d))
I[x = y]({x — [2,2],y — [1,2],z — [1,2]}
{x—= 12,2,y —[2,2],z— [1,2]}

18

Computing Solutions of Constraint Network

A constraint network (d, C) is a conjunctive collection of constraints. So we can compute the
set of solutions using:

IflanhaA...Ac]| =TI[a] oZ[c] o...oZ]ch]

Example: Let (d,{x = y,y = z}) be a constraint network with
d={x—1[2,2],y — [1,2],z+ [0,2]}, then:

Ix=y ANy =Zz]d
= ([Zlx=yleoZIly =2])d
= I[x =y](Zly = z](d))
I[x = y]({x — [2,2],y — [1,2],z — [1,2]}
{x—= 12,2,y —[2,2],z— [1,2]}

We are not very precise... z = [1,2] instead of z = [2,2].

18

Computing the Greatest Fixpoint

o d ={x—[2,2],y—[1,2],z+— [0,2]}.
e dh=TI[x=yAy=1z]di={x—1[2,2],y — [2,2],z — [1,2]}.

19

Computing the Greatest Fixpoint

o d ={x—[2,2],y—[1,2],z+— [0,2]}.

e dh=TI[x=yAy=2z]di ={x—[2,2],y — [2,2],z— [1,2]}.
e More precision? We can apply the function again!

e 3=TI[x=yAy=z]do={x—1[2,2],y — [2,2],z — [2,2]}.

19

Computing the Greatest Fixpoint

o d ={x—[2,2],y—[1,2],z+— [0,2]}.
h=I[x=yANy=2z]di={x—[2,2],y — [2,2],z — [1,2]}.

More precision? We can apply the function again!
d3=I[x=yAy=z]do={x—1[2,2],y — [2,2],z = [2,2]}.

Again? d; = Z[x = y Ay = z]d3, nothing changed! We reached a fixpoint.

19

Computing the Greatest Fixpoint

di ={x—[2,2],y —[1,2],z— [0,2]}.
h=I[x=yANy=2z]di={x—[2,2],y — [2,2],z — [1,2]}.

More precision? We can apply the function again!
d3=I[x=yAy=z]do={x—1[2,2],y — [2,2],z = [2,2]}.

Again? d; = Z[x = y Ay = z]d3, nothing changed! We reached a fixpoint.

For all formulas ¢, Z[¢] is a monotone function.
Hence, we are guaranteed to find the greatest fixpoint, which is unique (Tarski theorem).

Constraint propagation is an approach to compute efficiently the greatest fixpoint:

gfp, Z[ci] o ... o Z[ci]

19

Propagate and Search

The main algorithm behind discrete constraint solvers:

function soLve(d, {c1,...,cn})
d <« gfp, Z[c1] o ... o I[cn]
if Vx € X,3v € Z, d(x) = [v, V] then return {d}
else if 3x € X, d(x) = L then return {}
else
(di,...,dy) < split(d)
return | J!_, solve(d;, C)
end if
end function

Thanks to the split function, the algorithm is sound and complete.

20

Soundness

Closure Operator

The concrete interpretation function [.]” can be lifted to a closure operator over the concrete domain
defined as follows (D" £ (P(X — U), C)):

F[]:®— (D" — D)
FlelA £ An[e]

For all formulas ¢ € ®, F[¢] is a closure operator over D”.

Closure Operator

The concrete interpretation function [.]” can be lifted to a closure operator over the concrete domain
defined as follows (D" £ (P(X — U), C)):

F[]:®— (D" — D)
FlelA £ A o]

For all formulas ¢ € ®, F[¢] is a closure operator over D”.

It is helpful to construct F[.] inductively (easier to prove an abstraction is sound):

Ftrue] A =A

Flfalse] A ={}

Flp(tr,...,ta)]JA ={peAl([t:]p, ... [t:]p) € [P]r}
Fl—¢]A = A\ Flp]Asn

Flor A @] A = Fle1]AN Flea] A

Fler V2] A = Flp]AU Fle2] A

Solutions of a FOL Formula

The solutions of ¢ are given by the greatest fixed point gfpS Fle]-

gfp= Flol = [l

Abstract Domain

An abstract domain (for constraint reasoning) is a bounded lattice (A%, C, 1, M, L, T, F*[.])
such that:

e Every element of Af is representable in a machine.
e The operations on A? are efficiently computable.

o FLJ:® — (A" — AF) is a sound abstraction of F[.].
The concrete and abstract semantics are connected by a Galois connection:
(P(X = 1),C) £ (A", C)

Soundness: The abstract function F*[] should not remove any solution!

Galois Connection

Let (C,C) and (A,C) be lattices, and ao: C — A and v : A — C two maps.

Definition (Galois Connection)

The pair («,) is a Galois connection iff, Vc € C,Va € A, a(c) C a< ¢ C vy(a). We denote
this Galois connection as:

(C,C) &= (A L)

Definition (Alternative Characterization of Galois Connection)

The pair («,) is a Galois connection iff Vc € C, Va € A,

e (Gall) ¢ <~v(a(c)) and a(y(a)) < a.

e (Gal2) « and ~ are order-preserving.

Exercise: Prove the equivalence between both definitions.

24

The concrete and abstract semantics are connected by a Galois connection (D° = P(X — U)):

(D?, C) &= (A*,C)

e What we have: A concrete property S € D” and F[y] : D — D" a closure operator
filtering from S the assignments that are not solutions from .

e What we want: An abstract function F*[¢] : A* — A* which computes an
over-approximation (aka. a superset) of the solutions of (.

e We are going to define the notion of soundness.

25

(D’, C) == (A}, C)

Defining “F#[¢] over-approximates F [¢]":
e By (Gall), we have ¢ C v(«(c)).

26

(D’, C) == (A}, C)

Defining “F*[¢] over-approximates F[]":

e By (Gall), we have ¢ C v(«(c)).
e Since F[¢] is reductive (F[¢](c) C c) we also have F[¢](c) € v(a(c)).

26

(D’, C) == (A}, C)

Defining “F*[¢] over-approximates F[]":

e By (Gall), we have ¢ C v(«(c)).
e Since F[¢] is reductive (F[¢](c) C c) we also have F[¢](c) € v(a(c)).
e Equivalently and for clarity, we can write F[p] C v o a where C is the pointwise order.

26

(D’, C) == (A}, C)

Defining “F*[¢] over-approximates F[]":

e By (Gall), we have ¢ C v(«(c)).

e Since F[¢] is reductive (F[¢](c) C c) we also have F[¢](c) € v(a(c)).

e Equivalently and for clarity, we can write F[p] C v o a where C is the pointwise order.
e Once we are in the abstract, we wish to compute using F*[¢], and therefore, we must

have:
Flel CvoFie] o

26

(D*,C) == (A", C)

Defining “F*[io] over-approximates F[o]":

e By (Gall), we have ¢ C v(«(c)).

e Since F[¢] is reductive (F[¢](c) C c) we also have F[¢](c) € v(a(c)).

e Equivalently and for clarity, we can write F[] C v o o where C is the pointwise order.
e Once we are in the abstract, we wish to compute using F*[¢], and therefore, we must

have:
Flel CvoFie] o

Filp]a = a is a sound overapproximation of F[¢].

Interval Abstract Domain

The abstract domain of integer intervals is
T2 (X - I,C,0, N, x € X = 1,x € X+ [~00,00], Z[.]) where C,],I1 are pointwise
interval operations.

We have the Galois connection:
(X = P(2),€) == (X = L)

a(S) £ x € X — [min S(x), max S(x)]
(R) = xeX—={ceZ|[R(x)] <c<[R(X)}

Exercise: Prove the soundness of Z[x = y].

> |I>

27

Constraint Programming on GPU

Why Constraint Programming on GPU?

Why CP on GPU?

CPU clock speed is stagnating, GPU #cores is increasing quickly each year.

#Cores on Nvidia Tesla cards
18000
16000
14000
12000

10000
8000
6000
4000

2000 -
0

Nvidia M40 2015 Nvidia V100 2018 Nvidia A40 2020 Nvidia H100 2022

Easy speed-up: same code but faster.

28

Why CP on GPU?

e Machine learning (deep learning, reinforcement learning, ...) has seen tremendous
speed-ups (e.g. 100x, 1000x) by using GPU.
e Some (sequential) optimizations on CPU are made irrelevant if we can explore huge state

space faster.

Can we replicate the success of GPU on machine learning

applications to combinatorial optimization?

29

Constraint Programming on GPU

The rest of this talk:

e GPU Architecture.
e Challenges of Constraint Programming on GPU.
e Parallel Model of Computation.

e Ternary Constraint Network.

30

GPU Architecture

implified) Architecture of the GPU Nvidia V100

a 3\
Global memory (32 GB)
[L2 Cache (6MB)
SM 1 (128 KB L1 Cache SM 80 (128 KB L1 Cache
256 KB registers) 256 KB registers)

64 cores 64 cores

8 TPUs 8 TPUs

I
. 7

5120 cores on a single V100 GPU @ 1290MHz

Whitepaper: https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

31

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Programming Challenges

e Memory coalescence: the way to access the data is important (factor 10).

e Thread divergence: each thread within a warp (group of 32 threads) should execute the
same instructions.

Memory allocation (dynamic data structures): costly on GPU, everything is generally
pre-allocated.

Other limitations: small cache, limited number of lines of code, limited STL...

32

Challenges of Constraint Programming on GPU

On CPU: Embarrasingly Parallel Search (EPS)?

e ldea: Divide the problem into many subproblems beforehand (e.g. N x 30 with N the number of
threads).
e Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other

subproblems.

Subproblems A A A A A A AAA

VLD L

Threads pool T1 T2 T3 T2 T1 T1 T3 T2 T2 T1

2A. Malapert et al., ‘Embarrassingly Parallel Search in Constraint Programming’, JAIR, 2016
33]

On CPU: Embarrasingly Parallel Search (EPS)

e ldea: Divide the problem into many subproblems beforehand (e.g. N x 30 with N the number of
threads).
e Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other

subproblems.

Subproblems A AAA A A A AAA

NN N

Threads pool T1 T2 T3 T2 T1 Ti1 T3 T2 T2 T1

= Other approach: In modern solvers (e.g., Choco, OR-Tools), they use a portfolio approach (e.g.,
different split strategy on the same problem).

33

On CPU: Embarrasingly Parallel Search (EPS)

e Idea: Divide the problem into many subproblems beforehand (e.g. N x 30 with N the number of
threads).
e Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other

subproblems.

Subproblems A AAA A A A AAA

NN

Threads pool T1 T2 T3 T2 T1 Ti1 T3 T2 T2 T1

On GPU architectures, 1 subproblem per thread is not efficient (limited cache).
= Need to parallelize propagation: gfp, Z[ci] o ... o Z[c,].

33

here he Challenge?

Parallelizing gfpy Z[ci] o ... o Z[c,] is challenging because constraints share variables, and we
have typical shared state memory issues such data races and inefficiencies.

Contributions

e New parallel model of computation to execute propagators in parallel?:
gfpy Z[cil | .. || Zlc]
e Ternary constraint network: representation of constraints suited for GPU architectures®.

e First general constraint solver fully executing on GPU.
= Open-source: Publicly available on https://github.com/ptal/turbo.

2P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.
3P. Talbot, A GPU-based Constraint Programming Solver, AAAI, 2026.

34

https://github.com/ptal/turbo

Parallel Model of Computation

Parallel Model of Computation

[0..3]
g (/\
072 [5.3]

071 [[2.3]

f‘

[0.0] [I.7] [3.3]

4

o f(x) £ xn [2..00] models the constraint x > 2.
A

e g(x) £ xT[—00..2] models the constraint x < 2.
e Parallel execution: £ || g = [2..2]

35

Example of Parallel Propagation

Let's consider Z[x < 4 A x < 5] =Z[x < 4] || Z[x < 5]

Memory: Propagators:

X + [—o00,4] (Z[x < 4])
[x=[-00,00] | | B« [-,5 (Z[x<5])

36

Example of Parallel Propagation

Let's consider Z[x < 4 A x < 5] =Z[x < 4] || Z[x < 5]

Memory: Propagators:

’ X = [_007.]

X + [—o00,4] (Z[x < 4])
| | B« [-o05 (Zx<5])

Issue 1: data race? Parallel update of the same variable: upper bound of x.

36

Example of Parallel Propagation

Let's consider Z[x < 4 A x < 5] =Z[x < 4] || Z[x < 5]

Memory: Propagators:
- X [-00,4] (Z[x < 4])
’ x = [—00,5] ‘ [l % <« [0, 5] (Z[x < 5])

Issue 1: data race? Parallel update of the same variable: upper bound of x.
= Solution: Use atomic load and store!

36

Example of Parallel Propagation

Let's consider Z[x < 4 A x < 5] =Z[x < 4] || Z[x < 5]

Memory: Propagators:
- X [-00,4] (Z[x < 4])
’ x = [—00,5] ‘ [l % <« [0, 5] (Z[x < 5])

Issue 1: data race? Parallel update of the same variable: upper bound of x.
= Solution: Use atomic load and store!
= In CUDA: Integer load and store are atomic by default!

36

Example of Parallel Propagation

Let's consider Z[x < 4 A x < 5] =Z[x < 4] || Z[x < 5]

Memory: Propagators:
X| < [-00,4] (Z[x<4])
’ X = [_OOa.] ‘ || X «— [foo’5] (I[X < 51])

Issue 1: data race? Parallel update of the same variable: upper bound of x.
= Solution: Use atomic load and store!
= In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [—oc, 4] or [—00, 5] depending on the order of
execution.

36

Example of Parallel Propagation

Let's consider Z[x < 4 A x < 5] =Z[x < 4] || Z[x < 5]

Memory: Propagators:

X + [—o00,4] (Z[x < 4])
1 | B« [-00,5] (Z[x <5])

x = [—o0,

Issue 1: data race? Parallel update of the same variable: upper bound of x.
= Solution: Use atomic load and store!
= In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [—oc, 4] or [—00, 5] depending on the order of
execution.
= Solution: Use a fixpoint loop.

36

Example of Parallel Propagation

Let's consider Z[x < 4 A x < 5] =Z[x < 4] || Z[x < 5]

Memory: Propagators:
- X [-00,4] (Z[x < 4])
x = [Foo || B« [-o0,5] (Z[x<5])

Issue 1: data race? Parallel update of the same variable: upper bound of x.
= Solution: Use atomic load and store!
= In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [—oc, 4] or [—00, 5] depending on the order of
execution.
= Solution: Use a fixpoint loop.

Issue 3: progress? What if Z[x < 5] is always “winning"?

36

Example of Parallel Propagation

Let's consider Z[x < 4 A x < 5] =Z[x < 4] || Z[x < 5]

Memory: Propagators:

X + [—o00,4] (Z[x < 4])
|| B« [-00,5] (Z[x<5])

Issue 1: data race? Parallel update of the same variable: upper bound of x.
= Solution: Use atomic load and store!
= In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [—oc, 4] or [—00, 5] depending on the order of
execution.
= Solution: Use a fixpoint loop.

Issue 3: progress? What if Z[x < 5] is always “winning"?

= Solution: Write in the memory only if the value is strictly lower ([x] = v iff v < [x]). 2

Ternary Constraint Network

Representation of Propagators

e Represented using shared_ptr and variant data
structures.
= Uncoalesced memory accesses.

e Code similar to an interpreter:

switch(term.index()) {
case IVar:
case INeg:
case IAdd:
case IMul:

/e

= Thread divergence.

37

Ternary Normal Form (TNF)

We simplify the representation of constraints to ternary constraints of the form:

e x =y <op> z where x,y,z are variables.

e The operators are {+, /, x, mod, min, max, <, =}.

The constraint x + y # 2 is represented by:
tl=x+y
ZERO = (t1 = TWO) equivalent to false & (t1 = 2)

where ZERO and TWO are two variables with constant values.

38

Bytecode Representation

The ternary form of a propagator holds on 16 bytes:

struct bytecode_type {
int op;
int x;
int y;
int z;

Irg

e Uniform representation of propagators in memory = coalesced memory accesses.

e Limited number of operators + sorting = reduced thread divergence.

39

Drawback of TNF: increase in number of propagators and variables.

Benchmark on the MiniZinc Challenge 2024 (89 instances)

10°
X MiniZinc instances

102

10t

Constraints (log scale)

10°

The median increase of variables is 4.76x and propagators is 4.33x.

10t
Variables (log scale)

40

Divergence?

Normalized Operator Usage Across Instances

accap
aircraft-disassembly
e
cable-tree-wiring
community-detection
§ —
compression [
——
e
concert-hall-cap
fox-geese-corn

graph-c\ear-

hoist-benchmark

monitor-placement-1id
neighbours
network_50_cstr
peacable_queens
portal

tiny-cvrp
train-scheduling

triangular

word-equations

2) -

i
N N
B ! 3
% > <
g I g
i x I

x x

Operators

100

80

- 60

-40

20

41

Benchmarks: Turbo vs Choco v4.18

Comparison of the best objective values found (timeout: 20 mins, GPU: H100).

Turbo better
Turbo better

Equal
22.5%

Choco better

49.4%

Equal
OR-Tools better

42

