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This lecture in a nutshell!

We present the “fusion” of...

Constraint reasoning + Abstract interpretation

(and lattice theory)

that gives us abstract satisfaction.

WHY?

• Combining constraint solvers.

• Constructing sound propagators over complex domains.

• Constraint solving on GPUs.
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On the Menu

• Abstract Satisfaction (connection between logic and constraint reasoning)

• Abstract Constraint Programming (expressive reasoning framework)

• Abstract Constraint Programming on GPU (efficient reasoning framework)
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Abstract Satisfaction
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Syntax of First-Order Logic (FOL)

Let S = ⟨X ,F ,P⟩ be a first-order signature where X set of variables, F set of function symbols

and P set of predicate symbols.

⟨t⟩ ::= x variable x ∈ X

| f (t, . . . , t) function f ∈ F

⟨φ⟩ ::= p(t, . . . , t) predicate p ∈ P

| ¬φ negation

| φ ⋄ φ connector ⋄ ∈ {∧,∨,⇒,⇔}
| ∃x , φ existential quantifier

| ∀x , φ universal quantifier

Let Φ the set of well-formed formulas.
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Semantics of FOL

A structure A is a tuple (U, JKF , JKP) where

1. U is a non-empty set of elements—called the universe of discourse,

2. JKF is a function mapping function symbols f ∈ F with arity n to interpreted functions

Jf KF : Un → U, and

3. JKP is a function mapping predicate symbols p ∈ P with arity n to interpreted predicates

JpKP ⊆ Un.

An assignment is a function X → U mapping variables to values. We denote the set of

assignment by Asn. Let ρ ∈ Asn, we write ρ[x 7→ d ] the assignment in which we updated the

value of x by d in ρ.
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Entailment

The syntax and semantics are related by the ternary relation A ⊨ρ φ, called the entailment,

where A is a structure, ρ ∈ Asn and φ ∈ Φ. It is read as “the formula φ is satisfied by the

assignment ρ in the structure A”. We first give the interpretation function JKρ for evaluating

the terms of the language:

JxKρ = ρ(x) if x ∈ X

Jf (t1, . . . , tn)Kρ = Jf KF (Jt1Kρ, . . . , JtnKρ)

The relation ⊨ is defined inductively as follows:

A ⊨ρ p(t1, . . . , tn) iff (Jt1Kρ, . . . , JtnKρ) ∈ JpKP
A ⊨ρ φ1 ∧ φ2 iff A ⊨ρ φ1 and A ⊨ρ φ2

A ⊨ρ φ1 ∨ φ2 iff A ⊨ρ φ1 or A ⊨ρ φ2

A ⊨ρ ¬φ iff A ⊨ρ φ does not hold

A ⊨ρ ∃x , φ iff there exists d ∈ U such that A ⊨ρ[x 7→d ] φ

A ⊨ρ ∀x , φ iff for all d ∈ U, we have A ⊨ρ[x 7→d ] φ
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Concrete Domain

Given a structure A, we define the concrete interpretation function as:

J.K♭ : Φ → P(Asn)

JφK♭ = {ρ ∈ Asn | A ⊨ρ φ}

• We call the concrete domain the lattice D♭ ≜ ⟨P(Asn),⊆⟩ with J.K♭.

• A solution of the formula φ is an assignment s ∈ JφK♭.

• Example in the theory of standard integer arithmetics (and X = {x , y}):

Jx < y ∧ x ≥ 0K♭ = {
{x 7→ 0, y 7→ 1}
{x 7→ 0, y 7→ 2}

. . .

{x 7→ 1, y 7→ 2}
. . .

}
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One Problem, Many Communities, Many Formalisms

Many communities emerged to solve the same problem: find ρ such that A ⊨ρ φ.

BUT they (generally) focus on different fragments of FOL:

• Propositional fragment (SAT): (a ∨ b) ∧ (¬b ∨ c) with a, b, c ∈ {0, 1}.

• Pseudo-Boolean fragment:
∑

1≤i≤n ci ∗ ai ≤ c0 with ai ∈ {0, 1} and ci some integers constants.

• Linear programming (LP):
∑

1≤i≤n ci ∗ bi ≤ b0 with bi ∈ R and ci some real constants.

• Integer linear programming (ILP):
∑

1≤i≤n ci ∗ bi ≤ b0 with bi ∈ Z and ci some integer constants.

• Mixed integer linear programming (MILP):
∑

1≤i≤n ci ∗ bi ≤ b0 with bi ∈ Z or bi ∈ R and ci some integer

or real constants.

• Uninterpreted fragment (logic programming).

• Discrete constraint programming: ⟨X ,D,C⟩ with Di ∈ Pf (Z).

• Continuous constraint programming: ⟨X ,D,C⟩ with Di ∈ I(R).

• Satisfiability modulo theories (SMT).

• ...
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One Theory to Rule Them All?

SAT [DHK13]

SMT [DHK14]

Logic programming [Cou20]

Constraint programming (R) [Pel+13]

Constraint programming (Z) [Tal+19]

Linear programming [CH78]

Answer set programming

...

Abstract domains
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What is an abstract domain?

It is a lattice with some operations.

What is a lattice?

A tuple ⟨S ,⊑,⊔,⊓,⊥,⊤⟩ where S is a

set.

Example: Interval Lattice

• S ≜ {[a, b] | a ∈ Z ∪ {−∞}, b ∈
Z ∪ {∞}, a ≤ b} ∪ {⊥}

• [a, b] ⊑ [c, d ] ⇔ a ≥ c ∧ b ≤ d

• ⊤ ≜ [−∞,∞]

• [a, b] ⊓ [c, d ] ≜

[max{a, c},min{b, d}]
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Simple Logic of Intervals

• Logic: Φ ≜ x ≤ k | x ≥ k | Φ ∧ Φ | Φ ∨ Φ. (only 1 variable)

• Abstract interpretation:

• Jx ≤ kK ≜ [−∞, k]

• Jx ≥ kK ≜ [k,∞]

• Jφ ∧ φ′K ≜ JφK ⊓ Jφ′K
• Jφ ∨ φ′K ≜ JφK ⊔ Jφ′K

• Example:

• J(x ≤ 10 ∧ x ≥ 0) ∨ (x ≥ 5)K
• Jx ≤ 10 ∧ x ≥ 0K ⊔ Jx ≥ 5K
• (Jx ≤ 10K ⊓ Jx ≥ 0K) ⊔ Jx ≥ 5K
• ([−∞, 10] ⊓ [0,∞]) ⊔ [5,∞]

• [0, 10] ⊔ [5,∞]

• [0,∞]

• Soundness: JφK♭ ⊆ JφK (compute all solutions).

• Completeness: JφK♭ ⊇ JφK (compute only solutions).

Intervals are not complete: Jx ≤ 10 ∨ x ≥ 15K = [−∞,∞] (intervals cannot represent “holes”).
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What About Multiple Variables?

We lift interval to a function X → Itv mapping variables to intervals where Itv is the interval

lattice.

Now, we can define (with x ∈ X any variable):

• Jx ≤ kK ≜ {x 7→ [−∞, k]}.
• Jx ≥ kK ≜ {x 7→ [k,∞]}.
• ...

Example: Jx ≤ 0 ∧ y ≥ 0K = {x 7→ [−∞, 0], y 7→ [0,∞]}.

How to compute solutions of more expressive logic?
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Abstract Constraint Programming
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Constraint Programming

Constraint programming: FOL without quantifiers, U = Z and arithmetic constraints.

• Declarative paradigm: specify your problem and let the computer solves it for you.

• Many applications: scheduling, bin-packing, hardware design, satellite imaging, . . .

• Constraint programming is one approach to solve such combinatorial problems.

• Other approaches include SAT, linear programming, SMT, MILP, ASP,...
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5

Satellite image mosaic

State of the art

After a query with certain parameters:

N = 30 satellite images

Find the cover with the minimum number 
of images (NP-Hard)

Build the mosaic

1

1Combarro et al., Constraint Model for the Satellite Image Mosaic Selection Problem, CP 2023
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Constraint model of satellite imaging in MiniZinc:
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Constraint Network

Constraint Network

Let X be a finite set of variables and C be a finite set of constraints.

A constraint network is a pair P = ⟨d ,C ⟩ such that d ∈ X → Itv is the domain of the

variables where Itv is the set of intervals.

Note: It is just a ”format” to represent quantifier-free logical formulas where variables have

bounded domains.

Example

⟨{x 7→ [0, 2], y 7→ [2, 3]}, {x ≤ y − 1}⟩

A solution is {x 7→ 0, y 7→ 2}.
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Constraints with Multiple Variables

• We already have: Jx ≤ kK ≜ {x 7→ [−∞, k]}.

• Also: Jx = kK ≜ {x 7→ [k, k]}.

How to interpret Jx = yK?

• Unfortunately, without more information on x and y , we must set

Jx = yK ≜ {x 7→ [−∞,∞], y 7→ [−∞,∞]}, which is the same than ignoring the constraint...

Solution: give more information to the interpretation function.

• IJ.K ∈ Φ× (X → Itv) → (X → Itv)

• IJx = yKd ≜ {x 7→ d(x) ⊓ d(y), y 7→ d(x) ⊓ d(y)}

Example: Let d = {x 7→ [0, 5], y 7→ [5, 10]}, then IJx = yKd = {x 7→ [5, 5], y 7→ [5, 5]}.
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How to Deal with Conjunction?

• Before, we had Jφ ∧ φ′K ≜ JφK ⊓ Jφ′K.

• Now, we can lift this function to

IJφ ∧ φ′Kd ≜ IJφKd ⊓ IJφ′Kd

Problem: d must be copied... inefficient
• Instead, we can use functional composition:

IJφ ∧ φ′Kd ≜ (IJφK ◦ IJφ′K)d
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Computing Solutions of Constraint Network

A constraint network ⟨d ,C ⟩ is a conjunctive collection of constraints. So we can compute the

set of solutions using:

IJc1 ∧ c2 ∧ . . . ∧ cnK = IJc1K ◦ IJc2K ◦ . . . ◦ IJcnK

Example: Let ⟨d , {x = y , y = z}⟩ be a constraint network with

d = {x 7→ [2, 2], y 7→ [1, 2], z 7→ [0, 2]}, then:

IJx = y ∧ y = zKd
= (IJx = yK ◦ IJy = zK)d
= IJx = yK(IJy = zK(d))
= IJx = yK({x 7→ [2, 2], y 7→ [1, 2], z 7→ [1, 2]}
= {x 7→ [2, 2], y 7→ [2, 2], z 7→ [1, 2]}

We are not very precise... z = [1, 2] instead of z = [2, 2].
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Computing the Greatest Fixpoint

• d1 = {x 7→ [2, 2], y 7→ [1, 2], z 7→ [0, 2]}.
• d2 = IJx = y ∧ y = zKd1 = {x 7→ [2, 2], y 7→ [2, 2], z 7→ [1, 2]}.

• More precision? We can apply the function again!

• d3 = IJx = y ∧ y = zKd2 = {x 7→ [2, 2], y 7→ [2, 2], z 7→ [2, 2]}.
• Again? d3 = IJx = y ∧ y = zKd3, nothing changed! We reached a fixpoint.

For all formulas φ, IJφK is a monotone function.

Hence, we are guaranteed to find the greatest fixpoint, which is unique (Tarski theorem).

Constraint propagation is an approach to compute efficiently the greatest fixpoint:

gfpd IJc1K ◦ . . . ◦ IJcnK
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Propagate and Search

The main algorithm behind discrete constraint solvers:

function solve(d , {c1, . . . , cn})
d ← gfpd IJc1K ◦ . . . ◦ IJcnK
if ∀x ∈ X ,∃v ∈ Z, d(x) = [v , v ] then return {d}
else if ∃x ∈ X , d(x) = ⊥ then return {}
else

⟨d1, . . . , dn⟩ ← split(d)

return
⋃n

i=0 solve(di ,C )

end if

end function

Thanks to the split function, the algorithm is sound and complete.
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Soundness
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Closure Operator

The concrete interpretation function J.K♭ can be lifted to a closure operator over the concrete domain

defined as follows (D♭ ≜ ⟨P(X → U),⊆⟩):

F J.K : Φ → (D♭ → D♭)

F JφKA ≜ A ∩ JφK♭

Theorem

For all formulas φ ∈ Φ, F JφK is a closure operator over D♭.

It is helpful to construct F J.K inductively (easier to prove an abstraction is sound):

F JtrueKA = A

F JfalseKA = {}
F Jp(t1, . . . , tn)KA = {ρ ∈ A | (Jt1Kρ, . . . , JtnKρ) ∈ JpKP}
F J¬φKA = A \ F JφKAsn
F Jφ1 ∧ φ2KA = F Jφ1KA ∩ F Jφ2KA
F Jφ1 ∨ φ2KA = F Jφ1KA ∪ F Jφ2KA
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Solutions of a FOL Formula

The solutions of φ are given by the greatest fixed point gfp⊆ F JφK.

Lemma

gfp⊆ F JφK = JφK♭
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Abstract Domain

Definition

An abstract domain (for constraint reasoning) is a bounded lattice ⟨A♯,⊑,⊔,⊓,⊥,⊤,F ♯J.K⟩
such that:

• Every element of A♯ is representable in a machine.

• The operations on A♯ are efficiently computable.

• F ♯J.K : Φ→ (A♯ → A♯) is a sound abstraction of F J.K.

The concrete and abstract semantics are connected by a Galois connection:

⟨P(X → U),⊆⟩ −−−→←−−−α
γ
⟨A♯,⊑⟩

Soundness: The abstract function F ♯JφK should not remove any solution!
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Galois Connection

Let ⟨C ,⊆⟩ and ⟨A,⊑⟩ be lattices, and α : C → A and γ : A→ C two maps.

Definition (Galois Connection)

The pair (α, γ) is a Galois connection iff, ∀c ∈ C , ∀a ∈ A, α(c) ⊑ a⇔ c ⊆ γ(a). We denote

this Galois connection as:

⟨C ,⊆⟩ −−−→←−−−α
γ
⟨A,⊑⟩

Definition (Alternative Characterization of Galois Connection)

The pair (α, γ) is a Galois connection iff ∀c ∈ C , ∀a ∈ A,

• (Gal1) c ≤ γ(α(c)) and α(γ(a)) ≤ a.

• (Gal2) α and γ are order-preserving.

Exercise: Prove the equivalence between both definitions.
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Soundness

The concrete and abstract semantics are connected by a Galois connection (D♭ = P(X → U)):

⟨D♭,⊆⟩ −−−→←−−−α
γ
⟨A♯,⊑⟩

• What we have: A concrete property S ∈ D♭ and F JφK : D♭ → D♭ a closure operator

filtering from S the assignments that are not solutions from φ.

• What we want: An abstract function F ♯JφK : A♯ → A♯, which computes an

over-approximation (aka. a superset) of the solutions of φ.

• We are going to define the notion of soundness.
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Soundness

⟨D♭,⊆⟩ −−−→←−−−α
γ
⟨A♯,⊑⟩

Defining “F ♯JφK over-approximates F JφK”:

• By (Gal1), we have c ⊆ γ(α(c)).

• Since F JφK is reductive (F JφK(c) ⊆ c) we also have F JφK(c) ⊆ γ(α(c)).

• Equivalently and for clarity, we can write F JφK ⊆̇ γ ◦ α where ⊆̇ is the pointwise order.

• Once we are in the abstract, we wish to compute using F ♯JφK, and therefore, we must

have:

F JφK ⊆̇ γ ◦ F ♯JφK ◦ α

Lemma

F ♯JφKa ≜ a is a sound overapproximation of F JφK.
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Interval Abstract Domain

The abstract domain of integer intervals is

I♯ ≜ ⟨X → I, ⊑̇, ⊔̇, ⊓̇, x ∈ X 7→ ⊥, x ∈ X 7→ [−∞,∞], IJ.K⟩ where ⊑̇, ⊔̇, ⊓̇ are pointwise

interval operations.

We have the Galois connection:

⟨X → P(Z), ⊆̇⟩ −−−→←−−−
α

γ
⟨X → I, ⊑̇⟩

α(S) ≜ x ∈ X 7→ [min S(x),max S(x)]

γ(R) ≜ x ∈ X 7→ {c ∈ Z | ⌊R(x)⌋ ≤ c ≤ ⌈R(x)⌉}

Exercise: Prove the soundness of IJx = yK.
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Constraint Programming on GPU
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Why Constraint Programming on GPU?
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Why CP on GPU?

CPU clock speed is stagnating, GPU #cores is increasing quickly each year.

Easy speed-up: same code but faster.
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Why CP on GPU?

• Machine learning (deep learning, reinforcement learning, . . . ) has seen tremendous

speed-ups (e.g. 100x, 1000x) by using GPU.

• Some (sequential) optimizations on CPU are made irrelevant if we can explore huge state

space faster.

Can we replicate the success of GPU on machine learning

applications to combinatorial optimization?
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Constraint Programming on GPU

The rest of this talk:

• GPU Architecture.

• Challenges of Constraint Programming on GPU.

• Parallel Model of Computation.

• Ternary Constraint Network.
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GPU Architecture
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(Simplified) Architecture of the GPU Nvidia V100

...

Global memory (32 GB)

L2 Cache (6MB)

SM 1 (128 KB L1 Cache
256 KB registers)

64 cores

8 TPUs

SM 80 (128 KB L1 Cache
256 KB registers)

64 cores

8 TPUs

5120 cores on a single V100 GPU @ 1290MHz

Whitepaper: https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
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Programming Challenges

• Memory coalescence: the way to access the data is important (factor 10).

• Thread divergence: each thread within a warp (group of 32 threads) should execute the

same instructions.

• Memory allocation (dynamic data structures): costly on GPU, everything is generally

pre-allocated.

• Other limitations: small cache, limited number of lines of code, limited STL...
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Challenges of Constraint Programming on GPU
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On CPU: Embarrasingly Parallel Search (EPS)2

• Idea: Divide the problem into many subproblems beforehand (e.g. N × 30 with N the number of

threads).

• Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other

subproblems.

Subproblems

Threads pool

...

T1 T2 T3 T2 T1 T1 T3 T2 T2 T1

2A. Malapert et al., ‘Embarrassingly Parallel Search in Constraint Programming’, JAIR, 2016

33



On CPU: Embarrasingly Parallel Search (EPS)

• Idea: Divide the problem into many subproblems beforehand (e.g. N × 30 with N the number of

threads).

• Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other

subproblems.

Subproblems

Threads pool

...

T1 T2 T3 T2 T1 T1 T3 T2 T2 T1

⇒ Other approach: In modern solvers (e.g., Choco, OR-Tools), they use a portfolio approach (e.g.,

different split strategy on the same problem).
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On CPU: Embarrasingly Parallel Search (EPS)

• Idea: Divide the problem into many subproblems beforehand (e.g. N × 30 with N the number of

threads).

• Intuition: Statistically, there is little chance a subproblem takes longer than the sum of the other

subproblems.

Subproblems

Threads pool

...

T1 T2 T3 T2 T1 T1 T3 T2 T2 T1

On GPU architectures, 1 subproblem per thread is not efficient (limited cache).

⇒ Need to parallelize propagation: gfpd IJc1K ◦ . . . ◦ IJcnK.
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Where is the Challenge?

Parallelizing gfpd IJc1K ◦ . . . ◦ IJcnK is challenging because constraints share variables, and we

have typical shared state memory issues such data races and inefficiencies.

Contributions

• New parallel model of computation to execute propagators in parallel2:

gfpd IJc1K ∥ . . . ∥ IJcnK
• Ternary constraint network: representation of constraints suited for GPU architectures3.

• First general constraint solver fully executing on GPU.

⇒ Open-source: Publicly available on https://github.com/ptal/turbo.

2P. Talbot et al., A Variant of Concurrent Constraint Programming on GPU, AAAI, 2022.
3P. Talbot, A GPU-based Constraint Programming Solver, AAAI, 2026.
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Parallel Model of Computation
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Parallel Model of Computation

f

g

[0..3]

[1..3]

[2..3]

[3..3]

⊥

[0..2]

[0..1] [1..2]

[0..0] [1..1] [2..2]

• f (x) ≜ x ⊓ [2..∞] models the constraint x ≥ 2.

• g(x) ≜ x ⊓ [−∞..2] models the constraint x ≤ 2.

• Parallel execution: f || g = [2..2]
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Example of Parallel Propagation

Let’s consider IJx ≤ 4 ∧ x ≤ 5K = IJx ≤ 4K ∥ IJx ≤ 5K

Memory:

x = [−∞,∞]

Propagators:

x ← [−∞, 4] (IJx ≤ 4K)
|| x ← [−∞, 5] (IJx ≤ 5K)

Issue 1: data race? Parallel update of the same variable: upper bound of x .

⇒ Solution: Use atomic load and store!

⇒ In CUDA: Integer load and store are atomic by default!

Issue 2: nondeterminism? x can be equal to [−∞, 4] or [−∞, 5] depending on the order of

execution.

⇒ Solution: Use a fixpoint loop.

Issue 3: progress? What if IJx ≤ 5K is always “winning”?

⇒ Solution: Write in the memory only if the value is strictly lower (⌈x⌉ = v iff v < ⌈x⌉).
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Ternary Constraint Network
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Representation of Propagators

• Represented using shared_ptr and variant data

structures.

⇒ Uncoalesced memory accesses.

• Code similar to an interpreter:

switch(term.index()) {

case IVar:

case INeg:

case IAdd:

case IMul:

// ...

⇒ Thread divergence.
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Ternary Normal Form (TNF)

We simplify the representation of constraints to ternary constraints of the form:

• x = y <op> z where x,y,z are variables.

• The operators are {+, /, ∗,mod ,min,max ,≤,=}.

Example

The constraint x + y ̸= 2 is represented by:

t1 = x + y

ZERO = (t1 = TWO) equivalent to false ⇔ (t1 = 2)

where ZERO and TWO are two variables with constant values.
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Bytecode Representation

The ternary form of a propagator holds on 16 bytes:

struct bytecode_type {

int op;

int x;

int y;

int z;

};

• Uniform representation of propagators in memory ⇒ coalesced memory accesses.

• Limited number of operators + sorting ⇒ reduced thread divergence.
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Drawback of TNF: increase in number of propagators and variables.

Benchmark on the MiniZinc Challenge 2024 (89 instances)
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MiniZinc instances

The median increase of variables is 4.76x and propagators is 4.33x.
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Divergence?
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The problems use few operators: limited divergence.
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Benchmarks: Turbo vs Choco v4.18

Comparison of the best objective values found (timeout: 20 mins, GPU: H100).
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