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Background

1



Some of Neural Network Applications - Image Generator

prompt: a cat is using laptop with beer
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Some of Neural Network Applications - ChatGPT
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Some of Neural Network Applications - Self-driving car
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The Limitation of Neural Network - Robustness Issue
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The Limitation of Neural Network - Robustness Issue

Why is the robustness issue important?

Stop Max Speed 100

It is a safety and critical issue.
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Robustness Issue in Natural Lagnauge Process

1

1Li et al. (2018). Textbugger: Generating adversarial text against real-world

applications. arXiv preprint arXiv:1812.05271.
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Robustness Issue in Speech Recognition

2

2Wang et al. (2020, October). Adversarial examples attack and countermeasure for

speech recognition system: A survey. In International Conference on Security and

Privacy in Digital Economy.

8



Beyond Robustness Issue in Neural Networks

Safety Issue

3

3Katz et al. (2017). Reluplex: An efficient SMT solver for verifying deep neural

networks. In Computer Aided Verification: 29th International Conference, CAV 2017.
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Beyond Robustness Issue in Neural Networks
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Objective

In this field, we are not focusing on training or developing neural

networks.

Instead, we aim to identify any critical issues in neural networks
before deployment.

How can we do?
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Neural Network Verification
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Definition of Neural Network Verification (NNV)

There are 3 required components to define neural network verification.

NNV can be defined as:

N(x) |= ψ, ∀x ∈ ϕ (1)

If (1) is true, return UNSAT.

Otherwise, return SAT and at least one counter example.
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A Simple Example for Neural Network Verification

• Neural Network

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

• Pre-conditions

1 ≤ x1 ≤ 2 ∧ 2 ≤ x2 ≤ 3

• Post-conditions

o1 ≥ 0.5

※ In this talk, we only focus the activation function in N is ReLU.
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A Realistic Example - NNV with Robustness Property

1. Neural Network (N := R28×28 → R10)

2. Pre-conditions (x′ ∈ ϕ)∥∥xij − x ′ij
∥∥
p
≤ ϵ

3. Post-conditions

Suppose y is true label for x , argmaxN(x′) = y
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How is this research field growing?

Keywords: ”neural network verification” on GoogleScholar until 5th Dec 2024.
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How to check all perturbed images in Lp-norm region?

analysis(p)

p |= P
True False

True correct Type II Error

False Type I Error correct

Definition (Soundness)

For every program p ∈ L, analysis(p) = true =⇒ p |= P.

⇔ there is no type II error.

Definition (Completeness)

For every program p ∈ L, analysis(p) = true ⇐= p |= P.

⇔ there is no type I error.

4Rival, X., & Yi, K. (2020). Introduction to static analysis: an abstract interpretation

perspective. Mit Press.
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How to check all perturbed images in Lp-norm region?

Intuitively, we can build a mixed-integer programming model as following.

min
x,x̂

x̂n (2a)

s.t. x0 ∈ ϕ (2b)

x̂k+1 = Wk+1xk + bk+1 ∀k ∈ {1, . . . , |L| − 1} (2c)

xk = σ(x̂k) ∀k ∈ L (2d)

xk ∈ R, x̂k ≥ 0 ∀k ∈ L (2e)

, where xk = σ(x̂k) ∀k ∈ L

⇔ xk ≤ Mzk ∧ xk ≤ M(1− zk), where zk ∈ {0, 1} ∀k ∈ L

This approach is soundness and completeness, but ... only applicable

for very small instances.
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How to check all perturbed images in Lp-norm region?

Verifying properties in deep neural networks with ReLUs is NP-Complete5

• Enumeration:

Enumerate all perturbed images in ϕ.

• Attack:

Find adversarial example → Complete, Unsound

• Formal Verification - Abstract Interpretation → Sound

• Formal Verification - Abstract Interpretation → Incomplete

5Katz et al. (2017). Reluplex: An efficient SMT solver for verifying deep neural

networks. CAV 2017.
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How can we verify neural networks?

Precision vs Scalability 19



Formal Verification - Abstract Interpretation

19



Concrete Semantics
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Verifying Feed-forward Neural Network

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

Concrete Semantics:

The all possible values for each neuron.
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Feed-forward Neural Network - Concrete Semantics

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

Given:

1 ≤ x1 ≤ 2, 2 ≤ x2 ≤ 3

1. Weighted Sum: fs(x1, ..., xn) =
∑

i wixi
h1 = 0.8x1 + (−0.7)x2
h2 = 0.6x1 + 0.5x2

o1 = −1a1 + 0.4a2

2. ReLU: fa(x) = max(0, x)

a1 = max(0, h1)

a2 = max(0, h2) 21



Abstract Semantics
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Interval Domain
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Interval Lattice

Definition

The lattice of interval ⟨I,⊑,⊔,⊓,⊥, [−∞,∞]⟩ is defined as:

I ≜ {[a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞}, a ⊑ b} ∪ {⊥}

with the following operations:

• [a, b] ⊑ [c , d ] ⇔ a ≥ c ∧ b ≤ d .

• [a, b] ⊔ [c , d ] ≜ [min(a, c),max(b, d)].

• [a, b] ⊓ [c , d ] ≜ [max(a, c),min(b, d)].

We also define projection functions ⌊[a, b]⌋ ≜ a and ⌈[a, b]⌉ ≜ b.
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Interval Domain - Basic Operators

I1 = [−3, 5], I2 = [2, 4]

• Addition

I1 + I2 = [−3 + 2, 5 + 4] = [−1, 9]

• Subtraction

I1 − I2 = [−3− 2, 5− 4] = [−5, 1]

• Multiplication

I1 × I2 = [min(B),max(B)] = [−12, 20]

, where B = {−3× 2,−3× 4, 5× 2, 5× 4}

23



Interval Domain - Basic Operators

I1 = [−3, 5], I2 = [2, 4]

• Join

I1 ⊔ I2 = [min(−3, 2),max(5, 4)] = [−3, 5]

• Meet

I1 ⊓ I2 = [max(−3, 2),min(5, 4)] = [2, 4]

24



Feed-forward Neural Network - Abstract Operations

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

Abstract Transformer:

1. Weighted Sum:

f #s ([l1, u1], ..., [ln, un]) = [
∑

i l
′
i ,
∑

i u
′
i ]

,where l ′i = min(wi li ,wiui ) and u′i = max(wi li ,wiui )

2. ReLU:

f #a ([l , u]) = [max(0, l),max(0, u)]
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Example

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

• Pre-conditions:

1 ≤ x1 ≤ 2

2 ≤ x2 ≤ 3

• Post-conditions:

o1 ≥ 0.5

• Fully Connected & ReLU activation function
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Example - Interval Domain - Input Layer

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

By pre-conditions:

x1 = [1, 2], x2 = [2, 3]
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Example - Interval Domain - Hidden Layer

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

From Input Layer:

x1 = [1, 2], x2 = [2, 3]

Abstract Affine Function:

h1 = 0.8× [1, 2] + (−0.7)× [2, 3] = [−1.3, 0.2]

h2 = 0.6× [1, 2] + 0.5× [2, 3] = [1.6, 2.7]
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Example - Interval Domain - Activation Layer

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

From Hidden Layer:

h1 = [−1.3, 0.2], h2 = [1.6, 2.7]

Abstract ReLU Activation Function:

a1 = [ReLU(−1.3),ReLU(0.2)] = [0, 0.2]

a2 = [ReLU(1.6),ReLU(2.7)] = [1.6, 2.7]
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Example - Interval Domain - Output Layer

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

From Activation Layer:

a1 = [0, 0.2], a2 = [1.6, 2.7]

Abstract Affine Function:

o1 = −1× [0, 0.2] + 0.4× [1.6, 2.7] = [0.44, 1.08]

UNPROVED!
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Summary of Interval Domain

analysis(p)

p |= P
True False

True correct Type II Error

False Type I Error correct

Definition (Soundness)

For every program p ∈ L, analysis(p) = true =⇒ p |= P.

Definition (Completeness)

For every program p ∈ L, analysis(p) = true ⇐= p |= P.

Is the property really not satisfied for this neural network? or type I error?
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Zonotope Domain
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Extended Interval Domain - Zonotope Domain

Definition (Abstraction - Affine Expression)

α(x) = Z = c +
∑

j djyj , c , dj ∈ R, yj ∈ [−1, 1]

,where c is center, yj is generator

Definition (Concretization)

γ(Z) = [c −
∑

j | dj |, c +
∑

j | dj |]

Example

α(x) = Z = 1 + 3y1 − 2y2
γ(Z) = [1− 3− 2, 1 + 3 + 2] = [−4, 6]

32



Zonotope Domain - Basic Operators

Z1 = 3 + y1 − 2y2, Z2 = 1− y1 + 3y2

• Addition

Z1 + Z2 = 3 + y1 − 2y2 + 1− y1 + 3y2
= 4 + y2

• Subtraction

Z1 −Z2 = 3 + y1 − 2y2 − (1− y1 + 3y2)

= 2 + 2y1 − 5y2

• Multiplication

Z1 ×Z2 = (3 + y1 − 2y2)× (1− y1 + 3y2)

= 3− 2y1 + 7y2 + 5y1y2 − y2
1 − 6y2

2

33



Zonotope Domain - Basic Operators

6Ghorbal et al. (2009). The zonotope abstract domain taylor1+. In Computer Aided

Verification: 21st International Conference, CAV 2009.
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Zonotope Domain - Neural Network Operators

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

Abstract Transformer:

1. Weighted Sum:

f #s (Z1, ...,Zn) =
∑

i wiZi

=
∑

i wi (ci + djiyji )
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Zonotope Domain - Neural Network Operators

2. ReLU:

f #a (Z) =


Z if lZ > 0

0 if uZ ≤ 0

λZ + µ+ µynew otherwise

, where λ = uZ
uZ−lZ

, µ = −uZ×lZ
2×(uZ−lZ )

7Singh et al. (2018). Fast and effective robustness certification. Advances in neural

information processing systems, 31.
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Example

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

• pre-conditions

1 ≤ x1 ≤ 2

2 ≤ x2 ≤ 3

• post-conditions

o1 ≥ 0.5

• Fully Connected & ReLU activation function
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Example - Zonotope Domain - Input Layer

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

x1 = 1.5 + 0.5y1
x2 = 2.5 + 0.5y2
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Example - Zonotope Domain - Hidden Layer

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

From Input Layer:

x1 = 1.5 + 0.5y1, x2 = 2.5 + 0.5y2

Abstract Affine Function:

h1 = 0.8× x1 + (−0.7)× x2
= 0.8× (1.5 + 0.5y1) + (−0.7)× (2.5 + 0.5y2)

= −0.55 + 0.4y1 − 0.35y2

Concretization:

[−1.3, 0.2]
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Example - Zonotope Domain - Hidden Layer

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

From Input Layer:

x1 = 1.5 + 0.5y1, x2 = 2.5 + 0.5y2

Abstract Affine Function:

h2 = 0.6× x1 + 0.5× x2
= 0.6× (1.5 + 0.5y1) + 0.5× (2.5 + 0.5y2)

= 2.15 + 0.3y1 + 0.25y2

Concretization:

[1.6, 2.7]
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Example - Zonotope Domain - Activation Layer

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

From Hidden Layer:

h1 = −0.55 + 0.4y1 − 0.35y2, [−1.3, 0.2]

Abstract ReLU Activation Function:

a1 = 0.13× (−0.55 + 0.4y1 − 0.35y2) + 0.087 + 0.087y3
= −0.0715 + 0.052y1 − 0.0455y2 + 0.087 + 0.087y3
= 0.0155 + 0.052y1 − 0.0455y2 + 0.087y3

Concretization:

[−0.169, 0.1995]
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Example - Zonotope Domain - Activation Layer

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

From Hidden Layer:

h2 = 2.15 + 0.3y1 + 0.25y2, [1.6, 2.7]

Abstract ReLU Activation Function:

a2 = h2 = 2.15 + 0.3y1 + 0.25y2

Concretization:

[1.6, 2.7]
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Example - Zonotope Domain - Output Layer

x1

x2

h1 a1

h2 a2

o1

[1,2]

[2,3]

0.8

0.6

0.5

-0.7

-1

0.4

ReLU

ReLU

o1 ≥ 0.5?

From Activation Layer:

a1 = 0.0155 + 0.052y1 − 0.0455y2 + 0.087y3
a2 = 2.15 + 0.3y1 + 0.25y2

Abstract Affine Function:

o1 = −1× a1 + 0.4× a2
= −1× (0.0155 + 0.52y1 − 0.0455y2 + 0.087y3)

+0.4× (2.15 + 0.3y1 + 0.25y2)

= 0.8445 + 0.068y1 + 0.1455y2 − 0.087y3

Concretization:

[0.544, 1.145], PROVE! 43



Summary of Zonotope Domain

• Extend from interval domain.

• More precise than interval domain.

• Implicitly describe dependency between different neurons.

44



Other Abstract Domains
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Other Neural Network Architectures

• Layer types

1. Convolutional

2. Residual

3. ...

• Activation functions

1. Sigmoid

2. Tahn

3. ...

• Dataset

1. MNIST

2. CIFAR-10

3. CIFAR-100

4. ImageNet

5. ...
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Verification of Neural Network Competition (VNN-COMP)

The 5th International Verification of Neural Network Competition

(VNN-COMP’24)

The 7th International Symposium on AI Verification (SAIV’24)

The 36th International Conference on Computer Aided Verification (CAV’24)

The standardized comparison:

• .onnx: For storing neural network structure.

• .vnnlib: For defining the pre/post-conditions.

47



Performance in VNN-COMP
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Conclusion
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Conclusion

• Introduced neural network verification.

• Demonstrated how to use abstract interpretation to verify neural

network.

Welcome to join this research field!
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Thanks for your attention!

Q & A
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Online Resources

• A Tutorial Website

• Stanford Seminar - Recent progress in verifying neural networks,

Zico Kolter

• AAAI 2022 Tutorial: ”Formal Verification of Deep Neural Networks:

Theory and Practice”

50

https://neural-network-verification.com/
https://www.youtube.com/watch?v=Ma2rKDu-714
https://www.youtube.com/watch?v=Ma2rKDu-714
https://www.youtube.com/watch?v=-EKQhkMHWVU&t=1642s
https://www.youtube.com/watch?v=-EKQhkMHWVU&t=1642s
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