
Abstract Interpretation

Lattice Theory for Parallel Programming

Pierre Talbot

pierre.talbot@uni.lu

10th December 2024

University of Luxembourg

Costly Software Accidents

In 1996, the explosion of Ariane 501, which took ten years and $7 billion to build.

1

Costly Software Accidents

1

Costly Software Accidents

1

What Can We Do?

Nothing but it would be irresponsable.

“People who write software should have a clear sense of responsibility for its reliable

operation and resistance to compromise and error.”1
1https://cacm.acm.org/opinion/responsible-programming/

2

https://cacm.acm.org/opinion/responsible-programming/

Know Your Limits...

OK, we should verify software but we should also know our limits...

Undecidability

By Rice’s theorem, a static analyzer cannot have all of the following properties:

• General: works on Turing-complete program.

• Automated: does not require human intervention.

• Sound: find all bugs.

• Complete: all bugs reported are true bugs.

3

Testing

General, semi-automated, (sometimes) complete but unsound (e.g., unit testing).

“Program testing can be used to show the presence of bugs, but never to show their

absence!” (Edsger Dijkstra).

4

Bug Finding

General, automated, incomplete and unsound (e.g. Coverity, CodeSonar).

5

Model-Checking

Non-general (finite state model), semi-automated, complete and sound.

6

Theorem Proving

General, non-automated, complete and sound (e.g., Lean, Coq).

But require human intervention to provide invariants (time consuming and require expertise).

Success story: Compcert, certified C compiler.

7

Abstract Interpretation

General, automated, incomplete and sound.

Success story: Astrée, prove absence of bugs in synchronous
control/command aerospace software (Airbus).

Invented by Patrick and Radhia Cousot in the seventies.2

2Patrick Cousot and Radhia Cousot. “Abstract interpretation: a unified lattice model for static analysis of

programs by construction or approximation of fixpoints”. In: POPL 77’.
8

Simple Example: Pop Front

int pop_front(int* a, size_t& n) {

int front = a[0];

for(int i = 0; i < n; ++i) {

a[i - 1] = a[i];

}

n--;

return front;

}

This program has (at least) three bugs.

• Invalid memory access: a[0] when n = 0.

• Invalid memory access: a[i - 1] when i = 0.

• Overflow : ++i can overflow since we can have n > INT MAX.

9

Simple Example: Pop Front

int pop_front(int* a, size_t& n) {

int front = a[0];

for(int i = 0; i < n; ++i) {

a[i - 1] = a[i];

}

n--;

return front;

}

This program has (at least) three bugs.

• Invalid memory access: a[0] when n = 0.

• Invalid memory access: a[i - 1] when i = 0.

• Overflow : ++i can overflow since we can have n > INT MAX.

9

Simple Example: Pop Front

int pop_front(int* a, size_t& n) {

int front = a[0];

for(int i = 0; i < n; ++i) {

a[i - 1] = a[i];

}

n--;

return front;

}

Let’s run mopsa, a static analyzer, on this program:

mopsa-c pop front.c

10

Simple Example: Push Front

Corrected version:

int pop_front(int* a, size_t& n) {

if(n == 0) return -1;

int front = a[0];

for(size_t i = 1; i < n; ++i) {

a[i - 1] = a[i];

}

n--;

return front;

}

11

Abstract Interpretation

Abstract interpretation answers precisely elementary questions:

• What is a program?

• What is a property of a program?

• What is the verification problem?

We now formally introduce abstract interpretation:

• Concrete semantics: answer the questions above.

• Abstract semantics: design effective verification algorithm.

12

Concrete Semantics

12

Syntax

⟨S⟩ ::= X ← Expr assignment

| if Expr ◦ Expr then S else S fi conditional

| while Expr ◦ Expr do S done loop

| S ; S sequence

⟨Expr⟩ ::= X variable

| −Expr negation

| Expr ⋄ Expr arithmetic operation

| c constant c ∈ Z

where ◦ ∈ {=, ̸=,≤, <,>,≥, . . .} and ⋄ ∈ {+,−, /, ∗,%, . . .}.

13

What is a Program?

Let’s define:

• X a countable set of variables.

• Asn ≜ X → Z the set of assignments (aka. valuation, environments).

• L = {ℓ1, . . . , ℓn} the set of control points.

At each control point, we look for the set of all possible values of x :

set of values of x
ℓ1 Zℓ1

x ← 1; ℓ2 {1}ℓ2
while ℓ3x ≤ 10 do {1}ℓ3

ℓ4 {1}ℓ4
x ← x + 2; ℓ5 {3}ℓ5

doneℓ6

14

What is a Program?

Let’s define:

• X a countable set of variables.

• Asn ≜ X → Z the set of assignments (aka. valuation, environments).

• L = {ℓ1, . . . , ℓn} the set of control points.

At each control point, we look for the set of all possible values of x :

set of values of x
ℓ1 Zℓ1

x ← 1; ℓ2 {1}ℓ2
while ℓ3x ≤ 10 do {1, 3}ℓ3

ℓ4 {1, 3}ℓ4
x ← x + 2; ℓ5 {3, 5}ℓ5

doneℓ6

14

What is a Program?

Let’s define:

• X a countable set of variables.

• Asn ≜ X → Z the set of assignments (aka. valuation, environments).

• L = {ℓ1, . . . , ℓn} the set of control points.

At each control point, we look for the set of all possible values of x :

set of values of x
ℓ1 Zℓ1

x ← 1; ℓ2 {1}ℓ2
while ℓ3x ≤ 10 do {1, 3, 5, 7, 9, 11}ℓ3

ℓ4 {1, 3, 5, 7, 9}ℓ4
x ← x + 2; ℓ5 {3, 5, 7, 9, 11}ℓ5

doneℓ6 {11}ℓ6

14

Property of Programs

set of values of x
ℓ1 Zℓ1

x ← 1; ℓ2 {1}ℓ2
while ℓ3x ≤ 10 do {1, 3, 5, 7, 9, 11}ℓ3

ℓ4 {1, 3, 5, 7, 9}ℓ4
x ← x + 2; ℓ5 {3, 5, 7, 9, 11}ℓ5

doneℓ6 {11}ℓ6
• The sets Sℓi are called invariants.

• They are the strongest possible, there is no set S ′
ℓi
such that Sℓi ⊂ S ′

ℓi
.

• A property has the same domain than an invariant, for instance:

assert(x >= 11) after ℓ6 is the property {11, 12, 13, 14, 15, . . .}.
• Clearly this property is validated since {11}ℓ6 ⊆ {11, 12, 13, 14, 15, . . .} (the program is

even more restrictive than the property checked).

How to automatically compute the sets Sℓi?
15

Semantics of Atomic Commands

We define the semantics on expressions and commands ⟨Com⟩ ::= X ← Expr | Expr ◦ Expr .

• Semantics of expressions: EJ.K : Expr × Asn→ Z.

• Semantics of commands: CJ.K : Com × P(Asn)→ P(Asn).
CJ.K is similar to F J.K (defined for abstract satisfaction), but adapted to a programming language with

assignment (and no logical quantifiers).

Examples

Let A = {{x 7→ 1, y 7→ 10}, {x 7→ 2, y 7→ 11}}.

• Simple arithmetic: EJx ∗ yK{x 7→ 4, y 7→ 2} = 8.

• Assignment: CJx ← 1KA = {{x 7→ 1, y 7→ 10}, {x 7→ 1, y 7→ 11}}.
• Filtering: CJx ̸= 2KA = {{x 7→ 1, y 7→ 10}}.

16

Semantics of Atomic Commands

Semantics of Expressions

• EJxKρ ≜ ρ(x)

• EJ−eKρ ≜ −EJeKρ

• EJe1 ⋄ e2Kρ ≜ EJe1Kρ ⋄ EJe2Kρ (⋄ ∈ {+,−, /, ∗,%, . . .})
• EJcKρ ≜ c

Semantics of Commands

• CJx ← eKA ≜ {ρ[x 7→ EJeKρ] | ρ ∈ A}
• CJe1 ◦ e2KA ≜ {ρ ∈ A | EJe1Kρ ◦ EJe2Kρ} (◦ ∈ {=, ̸=,≤, <,>,≥, . . .})

17

Semantics of Program

• At each location ℓ ∈ L, we compute its set of reachable environments Xℓ ⊆ Asn.

• We create an equational system from the program such that its solution is {Xℓ1 , . . . ,Xℓn}.

eq(ℓ1 x ← e ℓ2) ≜ {Xℓ2 = CJx ← eKXℓ1}

eq(ℓ1 s1;
ℓ2 s2

ℓ3) ≜ eq(ℓ1 s1
ℓ2) ∪ eq(ℓ2 s2

ℓ3)

eq(ℓ1 if e1 ◦ e2 then ℓ2 s1
ℓ3 fi ℓ4) ≜

{Xℓ2 = CJe1 ◦ e2KXℓ1} ∪ eq(ℓ2 s1
ℓ3) ∪ {Xℓ4 = Xℓ3 ∪ CJe1 ̸ ◦ e2KXℓ1}

eq(ℓ1 while ℓ2 e1 ◦ e2 do ℓ3 s1
ℓ4 done ℓ5) ≜

{Xℓ2 = Xℓ1 ∪ Xℓ4 , Xℓ3 = CJe1 ◦ e2KXℓ2}
∪ eq(ℓ3 s1

ℓ4)

∪ {Xℓ5 = CJe1 ̸ ◦ e2KXℓ2}

18

Equational Semantics Illustrated

• At each location ℓ ∈ L, we compute its set of reachable environments Xℓ ⊆ Asn.

• We create an equational system from the program such that its solution is {Xℓ1 , . . . ,Xℓn}.

ℓ1 x ← 1; ℓ2

while ℓ3x ≤ 10 do
ℓ4 x ← x + 2 ℓ5

doneℓ6

Xℓ1 = Asn

Xℓ2 = CJx ← 1KXℓ1

Xℓ3 = Xℓ2 ∪ Xℓ5

Xℓ4 = CJx ≤ 10KXℓ3

Xℓ5 = CJx ← x + 2KXℓ4

Xℓ6 = CJx > 10KXℓ3

19

Computing the Least Fixpoint

X 0
ℓ1
= {}

X 1
ℓ1
= Asn X 2

ℓ1
= Asn X 3

ℓ1
= Asn

X 0
ℓ2
= {}

X 1
ℓ2
= {} X 2

ℓ2
= {ρ ∈ Asn | ρ(x) = 1} X 3

ℓ2
= {ρ ∈ Asn | ρ(x) = 1}

X 0
ℓ3
= {}

X 1
ℓ3
= {} X 2

ℓ3
= {} X 3

ℓ3
= {ρ ∈ Asn | ρ(x) = 1}

X 0
ℓ4
= {}

X 1
ℓ4
= {} X 2

ℓ4
= {} X 3

ℓ4
= {}

X 0
ℓ5
= {}

X 1
ℓ5
= {} X 2

ℓ5
= {} X 3

ℓ5
= {}

X 0
ℓ6
= {}

X 1
ℓ6
= {} X 2

ℓ6
= {} X 3

ℓ6
= {}

20

Computing the Least Fixpoint

X 0
ℓ1
= {} X 1

ℓ1
= Asn

X 1
ℓ1
= AsnX 2

ℓ1
= Asn X 3

ℓ1
= Asn

X 0
ℓ2
= {} X 1

ℓ2
= CJx ← 1KX 0

ℓ1

X 1
ℓ2
= {}X 2

ℓ2
= {ρ ∈ Asn | ρ(x) = 1} X 3

ℓ2
= {ρ ∈ Asn | ρ(x) = 1}

X 0
ℓ3
= {} X 1

ℓ3
= X 0

ℓ2
∪ X 0

ℓ5

X 1
ℓ3
= {}X 2

ℓ3
= {} X 3

ℓ3
= {ρ ∈ Asn | ρ(x) = 1}

X 0
ℓ4
= {} X 1

ℓ4
= CJx ≤ 10KX 0

ℓ3

X 1
ℓ4
= {}X 2

ℓ4
= {} X 3

ℓ4
= {}

X 0
ℓ5
= {} X 1

ℓ5
= CJx ← x + 2KX 0

ℓ4

X 1
ℓ5
= {}X 2

ℓ5
= {} X 3

ℓ5
= {}

X 0
ℓ6
= {} X 1

ℓ6
= CJx > 10KX 0

ℓ3

X 1
ℓ6
= {}X 2

ℓ6
= {} X 3

ℓ6
= {}

20

Computing the Least Fixpoint

X 0
ℓ1
= {} X 1

ℓ1
= Asn

X 2
ℓ1
= Asn X 3

ℓ1
= Asn

X 0
ℓ2
= {} X 1

ℓ2
= {}

X 2
ℓ2
= {ρ ∈ Asn | ρ(x) = 1} X 3

ℓ2
= {ρ ∈ Asn | ρ(x) = 1}

X 0
ℓ3
= {} X 1

ℓ3
= {}

X 2
ℓ3
= {} X 3

ℓ3
= {ρ ∈ Asn | ρ(x) = 1}

X 0
ℓ4
= {} X 1

ℓ4
= {}

X 2
ℓ4
= {} X 3

ℓ4
= {}

X 0
ℓ5
= {} X 1

ℓ5
= {}

X 2
ℓ5
= {} X 3

ℓ5
= {}

X 0
ℓ6
= {} X 1

ℓ6
= {}

X 2
ℓ6
= {} X 3

ℓ6
= {}

20

Computing the Least Fixpoint

X 0
ℓ1
= {} X 1

ℓ1
= Asn X 2

ℓ1
= Asn

X 2
ℓ1
= Asn X 3

ℓ1
= Asn

X 0
ℓ2
= {} X 1

ℓ2
= {} X 2

ℓ2
= CJx ← 1KX 1

ℓ1

X 2
ℓ2
= {ρ ∈ Asn | ρ(x) = 1}X 3

ℓ2
= {ρ ∈ Asn | ρ(x) = 1}

X 0
ℓ3
= {} X 1

ℓ3
= {} X 2

ℓ3
= X 1

ℓ2
∪ X 1

ℓ5

X 2
ℓ3
= {} X 3

ℓ3
= {ρ ∈ Asn | ρ(x) = 1}

X 0
ℓ4
= {} X 1

ℓ4
= {} X 2

ℓ4
= CJx ≤ 10KX 1

ℓ3

X 2
ℓ4
= {}X 3

ℓ4
= {}

X 0
ℓ5
= {} X 1

ℓ5
= {} X 2

ℓ5
= CJx ← x + 2KX 1

ℓ4

X 2
ℓ5
= {}X 3

ℓ5
= {}

X 0
ℓ6
= {} X 1

ℓ6
= {} X 2

ℓ6
= CJx > 10KX 1

ℓ3

X 2
ℓ6
= {}X 3

ℓ6
= {}

20

Computing the Least Fixpoint

X 0
ℓ1
= {} X 1

ℓ1
= Asn X 2

ℓ1
= Asn

X 3
ℓ1
= Asn

X 0
ℓ2
= {} X 1

ℓ2
= {} X 2

ℓ2
= {ρ ∈ Asn | ρ(x) = 1}

X 3
ℓ2
= {ρ ∈ Asn | ρ(x) = 1}

X 0
ℓ3
= {} X 1

ℓ3
= {} X 2

ℓ3
= {}

X 3
ℓ3
= {ρ ∈ Asn | ρ(x) = 1}

X 0
ℓ4
= {} X 1

ℓ4
= {} X 2

ℓ4
= {}

X 3
ℓ4
= {}

X 0
ℓ5
= {} X 1

ℓ5
= {} X 2

ℓ5
= {}

X 3
ℓ5
= {}

X 0
ℓ6
= {} X 1

ℓ6
= {} X 2

ℓ6
= {}

X 3
ℓ6
= {}

20

Computing the Least Fixpoint

X 0
ℓ1
= {} X 1

ℓ1
= Asn X 2

ℓ1
= Asn X 3

ℓ1
= Asn

X 3
ℓ1
= Asn

X 0
ℓ2
= {} X 1

ℓ2
= {} X 2

ℓ2
= {ρ ∈ Asn | ρ(x) = 1} X 3

ℓ2
= CJx ← 1KX 2

ℓ1

X 3
ℓ2
= {ρ ∈ Asn | ρ(x) = 1}

X 0
ℓ3
= {} X 1

ℓ3
= {} X 2

ℓ3
= {} X 3

ℓ3
= X 2

ℓ2
∪ X 2

ℓ5

X 3
ℓ3
= {ρ ∈ Asn | ρ(x) = 1}

X 0
ℓ4
= {} X 1

ℓ4
= {} X 2

ℓ4
= {} X 3

ℓ4
= CJx ≤ 10KX 2

ℓ3

X 3
ℓ4
= {}

X 0
ℓ5
= {} X 1

ℓ5
= {} X 2

ℓ5
= {} X 3

ℓ5
= CJx ← x + 2KX 2

ℓ4

X 3
ℓ5
= {}

X 0
ℓ6
= {} X 1

ℓ6
= {} X 2

ℓ6
= {} X 3

ℓ6
= CJx > 10KX 2

ℓ3

X 3
ℓ6
= {}

20

Computing the Least Fixpoint

X 0
ℓ1
= {} X 1

ℓ1
= Asn X 2

ℓ1
= Asn X 3

ℓ1
= Asn

X 0
ℓ2
= {} X 1

ℓ2
= {} X 2

ℓ2
= {ρ ∈ Asn | ρ(x) = 1} X 3

ℓ2
= {ρ ∈ Asn | ρ(x) = 1}

X 0
ℓ3
= {} X 1

ℓ3
= {} X 2

ℓ3
= {} X 3

ℓ3
= {ρ ∈ Asn | ρ(x) = 1}

X 0
ℓ4
= {} X 1

ℓ4
= {} X 2

ℓ4
= {} X 3

ℓ4
= {}

X 0
ℓ5
= {} X 1

ℓ5
= {} X 2

ℓ5
= {} X 3

ℓ5
= {}

X 0
ℓ6
= {} X 1

ℓ6
= {} X 2

ℓ6
= {} X 3

ℓ6
= {}

20

Computing the Least Fixpoint

The least fixpoint is reached after 10 iterations.

This way of computing the fixpoint is called Jacobi iterations.

ℓ1 x ← 1; ℓ2

while ℓ3x ≤ 10 do
ℓ4 x ← x + 2 ℓ5

doneℓ6

X 10
ℓ1

= Asn

X 10
ℓ2

= {ρ ∈ Asn | ρ(x) = 1}
X 10

ℓ3
= {ρ ∈ Asn | ρ(x) ∈ {1, 3, . . . , 11}}

X 10
ℓ4

= {ρ ∈ X 9
ℓ3
| ρ(x) ∈ {1, 3, . . . , 9}}

X 10
ℓ5

= {ρ ∈ X 9
ℓ4
| ρ(x) ∈ {3, . . . , 11}}

X 10
ℓ6

= {ρ ∈ X 9
ℓ3
| ρ(x) = 11}

21

System of Equations

We create a system of equations over the same domain L → P(X → Z):

Xℓi = Fi ({Xℓ1 , . . . ,Xℓn})
1 ≤ i ≤ n

where Fi ∈ (L → P(Asn))→ (L → P(Asn)) to obtain a system of equation of the form:

Example

From Xℓ2 = CJi ← 1KXℓ1 to Xℓ2 = F2({Xℓ1 , . . . ,Xℓ6}) with F2 defined as:

F2({Xℓ1 , . . . ,Xℓ6}) ≜ {Xℓ1 ,CJi ← 1KXℓ1 , . . . ,Xℓ6}

Then, the fixpoint of Fn ◦ Fn−1 ◦ . . . ◦ F1 starting at {{}ℓ1 , . . . , {}ℓn} is

the unique least fixpoint.

(by Kleene theorem and continuity of all Fi).

22

System of Equations

We create a system of equations over the same domain L → P(X → Z):

Xℓi = Fi ({Xℓ1 , . . . ,Xℓn})
1 ≤ i ≤ n

where Fi ∈ (L → P(Asn))→ (L → P(Asn)) to obtain a system of equation of the form:

Example

From Xℓ2 = CJi ← 1KXℓ1 to Xℓ2 = F2({Xℓ1 , . . . ,Xℓ6}) with F2 defined as:

F2({Xℓ1 , . . . ,Xℓ6}) ≜ {Xℓ1 ,CJi ← 1KXℓ1 , . . . ,Xℓ6}

Then, the fixpoint of Fn ◦ Fn−1 ◦ . . . ◦ F1 starting at {{}ℓ1 , . . . , {}ℓn} is

the unique least fixpoint.

(by Kleene theorem and continuity of all Fi).

22

Summary

Abstract interpretation answers precisely the questions we raised at the beginning:

• What is a program? The least fixpoint point of eq(S).

• What is a property? A subset of the environment P ∈ P(Asn).
Example: x < 12 is the property {ρ ∈ Asn | ρ(x) ∈ {1, 2, . . . , 11}}.

• What is the verification problem? An inclusion check: (lfp eq(S))ℓi ⊆ P.

Example: Xℓ6 = {ρ ∈ Asn | ρ(x) = 11} ⊆ {ρ ∈ Asn | ρ(x) ∈ {1, 2, . . . , 11}}

Note: We have focussed on a particular semantics called assertional forward reachability semantics, but there

exists other concrete semantics which are more or less precise (e.g. relational semantics, trace semantics).

23

Small Issues...

• lfp eq(S) might only exists after an infinite number of iterations.

• Even if finite, the sets Xℓi can grow exponentially, and the number of iterations can be

very big.

24

Abstract Semantics

24

Ingredients of Abstract Interpretation

Let S be a program.

We want a mechanical procedure approximating lfp eq(S).

The ingredients are:

1. An abstract representation A♯ of P(Asn) such that the elements of A♯ are finitely

representable in a machine.

2. An abstract set of equations eq♯(S) such that lfp eq♯(S) is computable in a finite number

of steps.

3. Soundness: lfp eq(S) ⊆ γ(lfp eq♯(S)) where γ : A♯ → P(Asn).
⇒ We overapproximate the least fixpoint, meaning that we find all bugs but potentially

have false-positives due to the overapproximation.

25

Abstract Domain

25

Abstract Domain

⇒ The key of abstract interpretation is to work with abstractions of the concrete semantics.

Definition

An abstract domain is a lattice ⟨A♯,⊑,⊔,⊓,⊥,⊤,C♯J.K⟩ such that:

• Every element of A♯ is representable in a machine.

• The operations on A♯ are efficiently computable.

• C♯J.K is order-preserving.

The concrete and abstract semantics are connected by a Galois connection:

⟨P(Asn),⊆⟩ −−−→←−−−α
γ
⟨A♯,⊑⟩

26

Interval Lattice

Definition

The lattice of interval ⟨I,⊑,⊔,⊓,⊥, [−∞,∞]⟩ is defined as:

I ≜ {[a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞}, a ≤ b} ∪ {⊥}

with the following operations:

• [a, b] ⊑ [c , d]⇔ a ≥ c ∧ b ≤ d .

• [a, b] ⊔ [c , d] ≜ [min(a, c),max(b, d)].

• [a, b] ⊓ [c , d] ≜ [max(a, c),min(b, d)].

• We suppose that all intervals [a, b] created such that a > b are mapped to ⊥.

We also define projection functions ⌊[a, b]⌋ ≜ a and ⌈[a, b]⌉ ≜ b.

27

Non-relational domains The interval domain

The interval lattice
Introduced by [Cous76].

B� def= { [a, b] | a ∈ I ∪ {−∞}, b ∈ I ∪ {+∞}, a ≤ b } ∪ {⊥�
b }

⊑

[-1,-1] [1,1][0,0] [9,9]...

[-∞,+∞]

......

[-1,0] [0,1]

[-1,1]

[1,9]...

[0,9]...

...

[-1,9]... ...

[-1,+∞] [0,+∞][-∞,9][-∞,1]

...

⊥

Note: intervals are open at infinite bounds +∞, −∞.
Course 3 Non-Relational Numerical Abstract Domains Antoine Miné p. 37 / 82

Abstract Interval Static Analysis

At each control point, we look for the set of all possible values of x :

abstract set of values of x
ℓ1 ⊤ℓ1

x ← 1; ℓ2 [1, 1]ℓ2
while ℓ3x ≤ 10 do [1, 1]ℓ3

ℓ4 [1, 1]ℓ4
x ← x + 2; ℓ5 [3, 3]ℓ5

doneℓ6

Loss of precision

Working in the abstract can result in weaker invariants:

• The second time we reach ℓ3, we have x 7→ [1..3].

• But 2 ∈ [1..3] although it is not a possible value!

• This interval analysis would be unable to prove that x ̸= 2 at location ℓ3.

28

Abstract Interval Static Analysis

At each control point, we look for the set of all possible values of x :

abstract set of values of x
ℓ1 ⊤ℓ1

x ← 1; ℓ2 [1, 1]ℓ2
while ℓ3x ≤ 10 do [1, 1] ⊔ [3, 3] = [1, 3]ℓ3

ℓ4 [1, 3]ℓ4
x ← x + 2; ℓ5 [3, 5]ℓ5

doneℓ6

Loss of precision

Working in the abstract can result in weaker invariants:

• The second time we reach ℓ3, we have x 7→ [1..3].

• But 2 ∈ [1..3] although it is not a possible value!

• This interval analysis would be unable to prove that x ̸= 2 at location ℓ3.

28

Abstract Interval Static Analysis

At each control point, we look for the set of all possible values of x :

abstract set of values of x
ℓ1 ⊤ℓ1

x ← 1; ℓ2 [1, 1]ℓ2
while ℓ3x ≤ 10 do [1, 11]ℓ3

ℓ4 [1, 9]ℓ4
x ← x + 2; ℓ5 [3, 11]ℓ5

doneℓ6 [11, 11]ℓ6

Loss of precision

Working in the abstract can result in weaker invariants:

• The second time we reach ℓ3, we have x 7→ [1..3].

• But 2 ∈ [1..3] although it is not a possible value!

• This interval analysis would be unable to prove that x ̸= 2 at location ℓ3.
28

Interval Abstract Domain

The abstract domain of interval is

I♯ ≜ ⟨X → I, ⊑̇, ⊔̇, ⊓̇, x ∈ X 7→ ⊥, x ∈ X 7→ [−∞,∞],C♯
I J.K⟩ where ⊑̇, ⊔̇, ⊓̇ are pointwise

interval operations.

The Galois connection with the concrete domain is given by:

• γI (σ) ≜ {ρ ∈ Asn | ∀x ∈ X , ρ(x) ∈ σ(x)}.
• αI (A) ≜ x ∈ X 7→

⊔
ρ∈A[ρ(x), ρ(x)].

Loss of precision

Let A = {{x 7→ 0, y 7→ 1}, {x 7→ 1, y 7→ 0}}, then:

γI (A) = {x 7→ [0, 1], y 7→ [0, 1]}

All relationships among variables are forgotten (this is called a Cartesian abstraction).

29

Interval Abstract Semantics

Abstract Semantics of Expressions

Let E♯
I J.K : Expr × (X → I)→ I and σ ∈ X → I.

• E♯
I JxKσ ≜ σ(x)

• E♯
I JcKσ ≜ [c, c]

• E♯
I J−eKσ ≜ let [a, b] = E♯

I JeKσ in [−b,−a]

• E♯
I Je1 + e2Kσ ≜ let [a, b] = E♯

I Je1Kσ in

let [c, d] = E♯
I Je2Kσ in [a+ c, b + d]

Abstract Semantics of Commands

Let C♯
I J.K : Com × (X → I)→ (X → I) and σ ∈ X → I.

• C♯
I Jx ← eKσ ≜ σ[x 7→ E♯

I JeKσ]

• C♯
I Jx ≤ yKσ ≜ σ[x 7→ σ(x) ⊓ [−∞, ⌈σ(y)⌉]]

⊓̇ σ[y 7→ σ(y) ⊓ [⌊σ(x)⌋,∞]]
30

Abstract Equational Semantics

30

Abstract Semantics of Program

• At each location ℓ ∈ L, we compute its set of reachable environments X ♯
ℓ ∈ A♯.

• We create an equational system from the program such that its solution is {X ♯
ℓ1
, . . . ,X ♯

ℓn
}.

eq♯(ℓ1 x ← e ℓ2) ≜ {X ♯
ℓ2
= C♯Jx ← eKX ♯

ℓ1
}

eq♯(ℓ1 s1;
ℓ2 s2

ℓ3) ≜ eq♯(ℓ1 s1
ℓ2) ∪ eq♯(ℓ2 s2

ℓ3)

eq♯(ℓ1 if e1 ◦ e2 then ℓ2 s1
ℓ3 fi ℓ4) ≜

{X ♯
ℓ2
= C♯Je1 ◦ e2KX ♯

ℓ1
} ∪ eq♯(ℓ2 s1

ℓ3) ∪ {X ♯
ℓ4
= X ♯

ℓ3
⊔ C♯Je1 ̸ ◦ e2KX ♯

ℓ1
}

eq♯(ℓ1 while ℓ2 e1 ◦ e2 do ℓ3 s1
ℓ4 done ℓ5) ≜

{X ♯
ℓ2
= X ♯

ℓ1
⊔ X ♯

ℓ4
, X ♯

ℓ3
= C♯Je1 ◦ e2KX ♯

ℓ2
}

∪ eq♯(ℓ3 s1
ℓ4)

∪ {X ♯
ℓ5
= C♯Je1 ̸ ◦ e2KX ♯

ℓ2
}

31

Abstract Fixpoint

Instead of working on the set of concrete values, we work on intervals.

ℓ1 i ← 1; ℓ2

while ℓ3 i ≤ 10 do
ℓ4 i ← i + 2 ℓ5

doneℓ6

X ♯
ℓ1
= ⊤

X ♯
ℓ2
= C♯

I Ji ← 1KX ♯
ℓ1

X ♯
ℓ3
= X ♯

ℓ2
⊔ X ♯

ℓ5

X ♯
ℓ4
= C♯

I Ji ≤ 10KX ♯
ℓ3

X ♯
ℓ5
= C♯

I Ji ← i + 2KX ♯
ℓ4

X ♯
ℓ6
= C♯

I Ji > 10KX ♯
ℓ3

32

Computing the Abstract Least Fixpoint

X ♯0
ℓ1

= ⊥

X ♯1
ℓ1

= ⊤ X ♯2
ℓ1

= ⊤ X ♯3
ℓ1

= ⊤

X ♯0
ℓ2

= ⊥

X ♯1
ℓ2

= ⊥ X ♯2
ℓ2

= ⊤[x 7→ [1, 1]] X ♯3
ℓ2

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ3

= ⊥

X ♯1
ℓ3

= ⊥ X ♯2
ℓ3

= ⊥ X ♯3
ℓ3

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ4

= ⊥

X ♯1
ℓ4

= ⊥ X ♯2
ℓ4

= ⊥ X ♯3
ℓ4

= ⊥

X ♯0
ℓ5

= ⊥

X ♯1
ℓ5

= ⊥ X ♯2
ℓ5

= ⊥ X ♯3
ℓ5

= ⊥

X ♯0
ℓ6

= ⊥

X ♯1
ℓ6

= ⊥ X ♯2
ℓ6

= ⊥ X ♯3
ℓ6

= ⊥

33

Computing the Abstract Least Fixpoint

X ♯0
ℓ1

= ⊥ X ♯1
ℓ1

= ⊤

X ♯1
ℓ1

= ⊤X ♯2
ℓ1

= ⊤ X ♯3
ℓ1

= ⊤

X ♯0
ℓ2

= ⊥ X ♯1
ℓ2

= C♯
I Jx ← 1KX ♯0

ℓ1

X ♯1
ℓ2

= ⊥X ♯2
ℓ2

= ⊤[x 7→ [1, 1]] X ♯3
ℓ2

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ3

= ⊥ X ♯1
ℓ3

= X ♯0
ℓ2
⊔ X ♯0

ℓ5

X ♯1
ℓ3

= ⊥X ♯2
ℓ3

= ⊥ X ♯3
ℓ3

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ4

= ⊥ X ♯1
ℓ4

= C♯
I Jx ≤ 10KX ♯0

ℓ3

X ♯1
ℓ4

= ⊥X ♯2
ℓ4

= ⊥ X ♯3
ℓ4

= ⊥

X ♯0
ℓ5

= ⊥ X ♯1
ℓ5

= C♯
I Jx ← x + 2KX ♯0

ℓ4

X ♯1
ℓ5

= ⊥X ♯2
ℓ5

= ⊥ X ♯3
ℓ5

= ⊥

X ♯0
ℓ6

= ⊥ X ♯1
ℓ6

= C♯
I Jx > 10KX ♯0

ℓ3

X ♯1
ℓ6

= ⊥X ♯2
ℓ6

= ⊥ X ♯3
ℓ6

= ⊥

33

Computing the Abstract Least Fixpoint

X ♯0
ℓ1

= ⊥ X ♯1
ℓ1

= ⊤

X ♯2
ℓ1

= ⊤ X ♯3
ℓ1

= ⊤

X ♯0
ℓ2

= ⊥ X ♯1
ℓ2

= ⊥

X ♯2
ℓ2

= ⊤[x 7→ [1, 1]] X ♯3
ℓ2

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ3

= ⊥ X ♯1
ℓ3

= ⊥

X ♯2
ℓ3

= ⊥ X ♯3
ℓ3

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ4

= ⊥ X ♯1
ℓ4

= ⊥

X ♯2
ℓ4

= ⊥ X ♯3
ℓ4

= ⊥

X ♯0
ℓ5

= ⊥ X ♯1
ℓ5

= ⊥

X ♯2
ℓ5

= ⊥ X ♯3
ℓ5

= ⊥

X ♯0
ℓ6

= ⊥ X ♯1
ℓ6

= ⊥

X ♯2
ℓ6

= ⊥ X ♯3
ℓ6

= ⊥

33

Computing the Abstract Least Fixpoint

X ♯0
ℓ1

= ⊥ X ♯1
ℓ1

= ⊤ X ♯2
ℓ1

= ⊤

X ♯2
ℓ1

= ⊤ X ♯3
ℓ1

= ⊤

X ♯0
ℓ2

= ⊥ X ♯1
ℓ2

= ⊥ X ♯2
ℓ2

= C♯
I Jx ← 1KX ♯1

ℓ1

X ♯2
ℓ2

= ⊤[x 7→ [1, 1]]X ♯3
ℓ2

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ3

= ⊥ X ♯1
ℓ3

= ⊥ X ♯2
ℓ3

= X ♯1
ℓ2
⊔ X ♯1

ℓ5

X ♯2
ℓ3

= ⊥ X ♯3
ℓ3

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ4

= ⊥ X ♯1
ℓ4

= ⊥ X ♯2
ℓ4

= C♯
I Jx ≤ 10KX ♯1

ℓ3

X ♯2
ℓ4

= ⊥X ♯3
ℓ4

= ⊥

X ♯0
ℓ5

= ⊥ X ♯1
ℓ5

= ⊥ X ♯2
ℓ5

= C♯
I Jx ← x + 2KX ♯1

ℓ4

X ♯2
ℓ5

= ⊥X ♯3
ℓ5

= ⊥

X ♯0
ℓ6

= ⊥ X ♯1
ℓ6

= ⊥ X ♯2
ℓ6

= C♯
I Jx > 10KX ♯1

ℓ3

X ♯2
ℓ6

= ⊥X ♯3
ℓ6

= ⊥

33

Computing the Abstract Least Fixpoint

X ♯0
ℓ1

= ⊥ X ♯1
ℓ1

= ⊤ X ♯2
ℓ1

= ⊤

X ♯3
ℓ1

= ⊤

X ♯0
ℓ2

= ⊥ X ♯1
ℓ2

= ⊥ X ♯2
ℓ2

= ⊤[x 7→ [1, 1]]

X ♯3
ℓ2

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ3

= ⊥ X ♯1
ℓ3

= ⊥ X ♯2
ℓ3

= ⊥

X ♯3
ℓ3

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ4

= ⊥ X ♯1
ℓ4

= ⊥ X ♯2
ℓ4

= ⊥

X ♯3
ℓ4

= ⊥

X ♯0
ℓ5

= ⊥ X ♯1
ℓ5

= ⊥ X ♯2
ℓ5

= ⊥

X ♯3
ℓ5

= ⊥

X ♯0
ℓ6

= ⊥ X ♯1
ℓ6

= ⊥ X ♯2
ℓ6

= ⊥

X ♯3
ℓ6

= ⊥

33

Computing the Abstract Least Fixpoint

X ♯0
ℓ1

= ⊥ X ♯1
ℓ1

= ⊤ X ♯2
ℓ1

= ⊤ X ♯3
ℓ1

= ⊤

X ♯3
ℓ1

= ⊤

X ♯0
ℓ2

= ⊥ X ♯1
ℓ2

= ⊥ X ♯2
ℓ2

= ⊤[x 7→ [1, 1]] X ♯3
ℓ2

= C♯
I Jx ← 1KX ♯2

ℓ1

X ♯3
ℓ2

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ3

= ⊥ X ♯1
ℓ3

= ⊥ X ♯2
ℓ3

= ⊥ X ♯3
ℓ3

= X ♯2
ℓ2
⊔ X ♯2

ℓ5

X ♯3
ℓ3

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ4

= ⊥ X ♯1
ℓ4

= ⊥ X ♯2
ℓ4

= ⊥ X ♯3
ℓ4

= C♯
I Jx ≤ 10KX ♯2

ℓ3

X ♯3
ℓ4

= ⊥

X ♯0
ℓ5

= ⊥ X ♯1
ℓ5

= ⊥ X ♯2
ℓ5

= ⊥ X ♯3
ℓ5

= C♯
I Jx ← x + 2KX ♯2

ℓ4

X ♯3
ℓ5

= ⊥

X ♯0
ℓ6

= ⊥ X ♯1
ℓ6

= ⊥ X ♯2
ℓ6

= ⊥ X ♯3
ℓ6

= C♯
I Jx > 10KX ♯2

ℓ3

X ♯3
ℓ6

= ⊥

33

Computing the Abstract Least Fixpoint

X ♯0
ℓ1

= ⊥ X ♯1
ℓ1

= ⊤ X ♯2
ℓ1

= ⊤ X ♯3
ℓ1

= ⊤
X ♯0

ℓ2
= ⊥ X ♯1

ℓ2
= ⊥ X ♯2

ℓ2
= ⊤[x 7→ [1, 1]] X ♯3

ℓ2
= ⊤[x 7→ [1, 1]]

X ♯0
ℓ3

= ⊥ X ♯1
ℓ3

= ⊥ X ♯2
ℓ3

= ⊥ X ♯3
ℓ3

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ4

= ⊥ X ♯1
ℓ4

= ⊥ X ♯2
ℓ4

= ⊥ X ♯3
ℓ4

= ⊥
X ♯0

ℓ5
= ⊥ X ♯1

ℓ5
= ⊥ X ♯2

ℓ5
= ⊥ X ♯3

ℓ5
= ⊥

X ♯0
ℓ6

= ⊥ X ♯1
ℓ6

= ⊥ X ♯2
ℓ6

= ⊥ X ♯3
ℓ6

= ⊥

33

Computing the Least Fixpoint

Similarly to the concrete fixpoint, the abstract fixpoint is reached after 10 iterations.

ℓ1 x ← 1; ℓ2

while ℓ3x ≤ 10 do
ℓ4 x ← x + 2 ℓ5

doneℓ6

X 10
ℓ1

= ⊤
X 10

ℓ2
= ⊤[x 7→ [1, 1]]

X 10
ℓ3

= ⊤[x 7→ [1, 11]]

X 10
ℓ4

= X 9
ℓ3
[x 7→ [1, 9]]

X 10
ℓ5

= X 9
ℓ4
[x 7→ [3, 11]]

X 10
ℓ6

= X 9
ℓ3
[x 7→ [11, 11]]

34

Unbounded Loop

The previous computation of the fixpoint terminates in a finite number of steps, but that is not the

case in general.

Suppose we bound the loop by n:

ℓ1 x ← 1; ℓ2

while ℓ3x ≤ n do
ℓ4 x ← x + 2 ℓ5

doneℓ6

Xm
ℓ1

= ⊤
Xm

ℓ2
= ⊤[x 7→ [1, 1]]

Xm
ℓ3

= ⊤[x 7→ [1, n + 1]]

Xm
ℓ4

= Xm−1
ℓ3

[x 7→ [1, n − 1]]

Xm
ℓ5

= Xm−1
ℓ4

[x 7→ [3, n + 1]]

Xm
ℓ6

= Xm−1
ℓ3

[x 7→ [n + 1, n + 1]]

This example supposes we know n

• What if n is a very large constant? Slow convergence

• Worst, what if n is a variable such that n 7→ [−∞,∞] in the environment? Convergence at

infinity only

• Question: What condition on A♯ would allow to always converge in finitely many steps?

35

Unbounded Loop

The previous computation of the fixpoint terminates in a finite number of steps, but that is not the

case in general.

Suppose we bound the loop by n:

ℓ1 x ← 1; ℓ2

while ℓ3x ≤ n do
ℓ4 x ← x + 2 ℓ5

doneℓ6

Xm
ℓ1

= ⊤
Xm

ℓ2
= ⊤[x 7→ [1, 1]]

Xm
ℓ3

= ⊤[x 7→ [1, n + 1]]

Xm
ℓ4

= Xm−1
ℓ3

[x 7→ [1, n − 1]]

Xm
ℓ5

= Xm−1
ℓ4

[x 7→ [3, n + 1]]

Xm
ℓ6

= Xm−1
ℓ3

[x 7→ [n + 1, n + 1]]

This example supposes we know n

• What if n is a very large constant? Slow convergence

• Worst, what if n is a variable such that n 7→ [−∞,∞] in the environment? Convergence at

infinity only

• Question: What condition on A♯ would allow to always converge in finitely many steps? 35

Widening

Definition

Let ⟨A♯,⊑⟩ be an abstract domain.

A widening is a function ∇ : A♯ × A♯ → A♯ such that for all x , y ∈ A♯:

x ⊑ x∇y y ⊑ x∇y

We say that ∇ is terminating if for any increasing sequence x1 ⊑ x2 ⊑ . . . and arbitrary

sequence y1, y2, . . . such that ∀k ∈ N, xk+1 = xk∇yk , there exists i ∈ N such that x i+1 = x i .

Interval widening

Let’s define a widening over intervals (push unstable bounds to infinities):

• ⊥∇x ≜ x∇⊥ ≜ x

• [a, b]∇[c, d] ≜ [L a > c −∞ a M, L b < d ∞ b M]

36

Interval Widening

ℓ1 i ← 1; ℓ2

while ℓ3 i ≤ n do
ℓ4 i ← i + 2 ℓ5

doneℓ6

X ♯k+1
ℓ1

= ⊤
X ♯k+1

ℓ2
= C♯

I Ji ← 1KX ♯k
ℓ1

X ♯k+1
ℓ3

= X ♯k
ℓ3
∇ X ♯k

ℓ2
⊔ X ♯k

ℓ5

X ♯k+1
ℓ4

= C♯
I Ji ≤ 10KX ♯k

ℓ3

X ♯k+1
ℓ5

= C♯
I Ji ← i + 2KX ♯k

ℓ4

X ♯k+1
ℓ6

= C♯
I Ji > 10KX ♯k

ℓ3

Focus on X ♯
ℓ3

X ♯2
ℓ3

= ⊥∇⊥ = ⊥
X ♯3

ℓ3
= X ♯2

ℓ3
∇⊤[x 7→ [1, 1]] = ⊥∇⊤[x 7→ [1, 1]] = ⊤[x 7→ [1, 1]]

X ♯4
ℓ3

= X ♯3
ℓ3
∇⊤[x 7→ [1, 3]] = ⊤[x 7→ [1, 1]]∇⊤[x 7→ [1, 3]] = ⊤[x 7→ [1,∞]]

X ♯5
ℓ3

= X ♯4
ℓ3
∇⊤[x 7→ [1,∞]] = ⊤[x 7→ [1,∞]]∇⊤[x 7→ [1,∞]] = ⊤[x 7→ [1,∞]]

Widening helps to enforce convergence at the cost of a loss of
precision. 37

Soundness

37

Soundness

Let ⟨C ,≤⟩ be the concrete domain and ⟨A,⊑⟩ the abstract domain.

Definition

• A transformer is an order-preserving function f : C → C (e.g., CJ.K or eq(.)).

• An abstract transformer is an order-preserving function f : A→ A (e.g., C♯J.K or eq♯(.)).

Soundness: lfp≤ f ≤ γ(lfp⊑ f)
(we say lfp⊑ f is a sound fixpoint overapproximation of lfp≤ f .)

What are the conditions required on A and its abstract transformers to satisfy soundness?

38

Soundness

Theorem (Sound transformer abstraction [Cou21] Th. 18.3)

If ⟨C ,≤⟩ −−−→←−−−α
γ
⟨A,⊑⟩ then ⟨C ↗−−→ C , ≤̇⟩ −−−→←−−−−→α

−→γ
⟨A ↗−−→ A, ⊑̇⟩ with:

−→α (f) ≜ α ◦ f ◦ γ
−→γ (f) ≜ γ ◦ f ◦ α

To abstract a least fixpoint α(lfp≤ f), we abstract its transformer into an abstract transformer

α ◦ f ◦ γ ∈ A→ A.

From concrete to abstract transformers

We could define C♯
I Jx ≤ yK ≜ α ◦ CJx ≤ yK ◦ γ.

39

Soundness

Theorem (Least fixpoint overapproximation in a complete lattice [Cou21] Th. 18.10)

Let ⟨C ,≤⟩ and ⟨A,⊑⟩ be complete lattices, ⟨C ,≤⟩ −−−→←−−−α
γ
⟨A,⊑⟩ and f ∈ C → C

order-preserving.

Then lfp≤ f ≤ γ(lfp⊑ α ◦ f ◦ γ).

Proof.

lfp≤ f

=
∧
{x ∈ C | f (x) ≤ x} (by Tarski’s fixpoint theorem)

≤
∧
{γ(x) | f (γ(x)) ≤ γ(x)}

= γ(
d
{x ∈ A | f (γ(x)) ≤ γ(x)}) (γ preserves arbritrary meet)

= γ(
d
{x ∈ A | (α ◦ f ◦ γ)(x) ⊑ x}) (by ⟨C ,≤⟩ −−−→←−−−α

γ
⟨A,⊑⟩)

= γ(lfp⊑ α ◦ f ◦ γ) (by Tarski’s fixpoint theorem)

40

Soundness

α ◦ f ◦ γ is convenient from a mathematical perspective but not usable in practice as α, γ and

f might not be computable.

Hence, we approximate this definition.

Theorem ([Cou21] Th. 18.7)

Let ⟨C ,≤⟩ be a complete lattice and f , g ∈ C → C order-preserving.

If f ≤̇ g then lfp≤ f ⊑ lfp≤ g.

Corollary

Let α ◦ f ◦ γ ⊑̇ f . Then lfp≤ f ≤ γ(lfp⊑ f).

Proof.

By Th. 18.7 and Th. 18.10.

41

Other Concepts of Abstract Interpretation

41

Many techniques to improve precision

• Various abstract domains with different precision/efficiency tradeoff (replacing intervals

in the previous example).

• Various products of abstract domains to combine their strengths.

• More efficient fixpoint algorithms (narrowing, chaotic iterations, . . .).

• . . .

42

Course organisation

Course plan (2/8)
Bricks of abstraction: numerical domains

simple domains

x

y

Intervals
x ∈ [a, b]

x

y

Congruences
x ∈ aZ + b

relational domains

x

y

Octagons
±x ± y ≤ c

x

y

Polyhedra�
i
αi xi ≤ β

specific domains

x

y

Ellipsoids
digital filters

t

y

Exponentials
rounding errors

Course 0 Introduction Antoine Miné p. 33 / 40

Conclusion

42

Universality of Lattice Theory and Abstract Interpretation

Abstraction and approximation are two central concepts in computer science. Abstract

interpretation captures those precisely, thus has many applications beyond program analysis:

• Constraint reasoning.

• Neural network verification.

• (Gradual) typing.

• Conflict-free replicated data types (CRDTs).

• Parallel computing.

43

Resources

• MPRI class of Antoine Miné:

https://www-apr.lip6.fr/~mine/enseignement/mpri/2023-2024/ (two slides

stolen from this class).

• Two recent books:

44

https://www-apr.lip6.fr/~mine/enseignement/mpri/2023-2024/

References

[Cou21] Patrick Cousot. Principles of abstract interpretation. MIT Press, 2021.

45

	References

