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Costly Software Accidents

In 1996, the explosion of Ariane 501, which took ten years and $7 billion to build.
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What Can We Do?

Nothing but it would be irresponsable.

“People who write software should have a clear sense of responsibility for its reliable

operation and resistance to compromise and error.”1
1https://cacm.acm.org/opinion/responsible-programming/
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Know Your Limits...

OK, we should verify software but we should also know our limits...

Undecidability

By Rice’s theorem, a static analyzer cannot have all of the following properties:

• General: works on Turing-complete program.

• Automated: does not require human intervention.

• Sound: find all bugs.

• Complete: all bugs reported are true bugs.
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Testing

General, semi-automated, (sometimes) complete but unsound (e.g., unit testing).

“Program testing can be used to show the presence of bugs, but never to show their

absence!” (Edsger Dijkstra).

4



Bug Finding

General, automated, incomplete and unsound (e.g. Coverity, CodeSonar).
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Model-Checking

Non-general (finite state model), semi-automated, complete and sound.
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Theorem Proving

General, non-automated, complete and sound (e.g., Lean, Coq).

But require human intervention to provide invariants (time consuming and require expertise).

Success story: Compcert, certified C compiler.
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Abstract Interpretation

General, automated, incomplete and sound.

Success story: Astrée, prove absence of bugs in synchronous
control/command aerospace software (Airbus).

Invented by Patrick and Radhia Cousot in the seventies.2

2Patrick Cousot and Radhia Cousot. “Abstract interpretation: a unified lattice model for static analysis of

programs by construction or approximation of fixpoints”. In: POPL 77’.
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Simple Example: Pop Front

int pop_front(int* a, size_t& n) {

int front = a[0];

for(int i = 0; i < n; ++i) {

a[i - 1] = a[i];

}

n--;

return front;

}

This program has (at least) three bugs.

• Invalid memory access: a[0] when n = 0.

• Invalid memory access: a[i - 1] when i = 0.

• Overflow : ++i can overflow since we can have n > INT MAX.
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Simple Example: Pop Front

int pop_front(int* a, size_t& n) {

int front = a[0];

for(int i = 0; i < n; ++i) {

a[i - 1] = a[i];

}

n--;

return front;

}

Let’s run mopsa, a static analyzer, on this program:

mopsa-c pop front.c
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Simple Example: Push Front

Corrected version:

int pop_front(int* a, size_t& n) {

if(n == 0) return -1;

int front = a[0];

for(size_t i = 1; i < n; ++i) {

a[i - 1] = a[i];

}

n--;

return front;

}
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Abstract Interpretation

Abstract interpretation answers precisely elementary questions:

• What is a program?

• What is a property of a program?

• What is the verification problem?

We now formally introduce abstract interpretation:

• Concrete semantics: answer the questions above.

• Abstract semantics: design effective verification algorithm.

12



Concrete Semantics
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Syntax

⟨S⟩ ::= X ← Expr assignment

| if Expr ◦ Expr then S else S fi conditional

| while Expr ◦ Expr do S done loop

| S ; S sequence

⟨Expr⟩ ::= X variable

| −Expr negation

| Expr ⋄ Expr arithmetic operation

| c constant c ∈ Z

where ◦ ∈ {=, ̸=,≤, <,>,≥, . . .} and ⋄ ∈ {+,−, /, ∗,%, . . .}.
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What is a Program?

Let’s define:

• X a countable set of variables.

• Asn ≜ X → Z the set of assignments (aka. valuation, environments).

• L = {ℓ1, . . . , ℓn} the set of control points.

At each control point, we look for the set of all possible values of x :

set of values of x
ℓ1 Zℓ1

x ← 1; ℓ2 {1}ℓ2
while ℓ3x ≤ 10 do {1}ℓ3

ℓ4 {1}ℓ4
x ← x + 2; ℓ5 {3}ℓ5

doneℓ6
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What is a Program?

Let’s define:

• X a countable set of variables.

• Asn ≜ X → Z the set of assignments (aka. valuation, environments).

• L = {ℓ1, . . . , ℓn} the set of control points.

At each control point, we look for the set of all possible values of x :

set of values of x
ℓ1 Zℓ1

x ← 1; ℓ2 {1}ℓ2
while ℓ3x ≤ 10 do {1, 3, 5, 7, 9, 11}ℓ3

ℓ4 {1, 3, 5, 7, 9}ℓ4
x ← x + 2; ℓ5 {3, 5, 7, 9, 11}ℓ5

doneℓ6 {11}ℓ6
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Property of Programs

set of values of x
ℓ1 Zℓ1

x ← 1; ℓ2 {1}ℓ2
while ℓ3x ≤ 10 do {1, 3, 5, 7, 9, 11}ℓ3

ℓ4 {1, 3, 5, 7, 9}ℓ4
x ← x + 2; ℓ5 {3, 5, 7, 9, 11}ℓ5

doneℓ6 {11}ℓ6
• The sets Sℓi are called invariants.

• They are the strongest possible, there is no set S ′
ℓi
such that Sℓi ⊂ S ′

ℓi
.

• A property has the same domain than an invariant, for instance:

assert(x >= 11) after ℓ6 is the property {11, 12, 13, 14, 15, . . .}.
• Clearly this property is validated since {11}ℓ6 ⊆ {11, 12, 13, 14, 15, . . .} (the program is

even more restrictive than the property checked).

How to automatically compute the sets Sℓi?
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Semantics of Atomic Commands

We define the semantics on expressions and commands ⟨Com⟩ ::= X ← Expr | Expr ◦ Expr .

• Semantics of expressions: EJ.K : Expr × Asn→ Z.

• Semantics of commands: CJ.K : Com × P(Asn)→ P(Asn).
CJ.K is similar to F J.K (defined for abstract satisfaction), but adapted to a programming language with

assignment (and no logical quantifiers).

Examples

Let A = {{x 7→ 1, y 7→ 10}, {x 7→ 2, y 7→ 11}}.

• Simple arithmetic: EJx ∗ yK{x 7→ 4, y 7→ 2} = 8.

• Assignment: CJx ← 1KA = {{x 7→ 1, y 7→ 10}, {x 7→ 1, y 7→ 11}}.
• Filtering: CJx ̸= 2KA = {{x 7→ 1, y 7→ 10}}.
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Semantics of Atomic Commands

Semantics of Expressions

• EJxKρ ≜ ρ(x)

• EJ−eKρ ≜ −EJeKρ

• EJe1 ⋄ e2Kρ ≜ EJe1Kρ ⋄ EJe2Kρ (⋄ ∈ {+,−, /, ∗,%, . . .})
• EJcKρ ≜ c

Semantics of Commands

• CJx ← eKA ≜ {ρ[x 7→ EJeKρ] | ρ ∈ A}
• CJe1 ◦ e2KA ≜ {ρ ∈ A | EJe1Kρ ◦ EJe2Kρ} (◦ ∈ {=, ̸=,≤, <,>,≥, . . .})
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Semantics of Program

• At each location ℓ ∈ L, we compute its set of reachable environments Xℓ ⊆ Asn.

• We create an equational system from the program such that its solution is {Xℓ1 , . . . ,Xℓn}.

eq(ℓ1 x ← e ℓ2) ≜ {Xℓ2 = CJx ← eKXℓ1}

eq(ℓ1 s1;
ℓ2 s2

ℓ3) ≜ eq(ℓ1 s1
ℓ2) ∪ eq(ℓ2 s2

ℓ3)

eq(ℓ1 if e1 ◦ e2 then ℓ2 s1
ℓ3 fi ℓ4) ≜

{Xℓ2 = CJe1 ◦ e2KXℓ1} ∪ eq(ℓ2 s1
ℓ3) ∪ {Xℓ4 = Xℓ3 ∪ CJe1 ̸ ◦ e2KXℓ1}

eq(ℓ1 while ℓ2 e1 ◦ e2 do ℓ3 s1
ℓ4 done ℓ5) ≜

{Xℓ2 = Xℓ1 ∪ Xℓ4 , Xℓ3 = CJe1 ◦ e2KXℓ2}
∪ eq(ℓ3 s1

ℓ4)

∪ {Xℓ5 = CJe1 ̸ ◦ e2KXℓ2}
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Equational Semantics Illustrated

• At each location ℓ ∈ L, we compute its set of reachable environments Xℓ ⊆ Asn.

• We create an equational system from the program such that its solution is {Xℓ1 , . . . ,Xℓn}.

ℓ1 x ← 1; ℓ2

while ℓ3x ≤ 10 do
ℓ4 x ← x + 2 ℓ5

doneℓ6

Xℓ1 = Asn

Xℓ2 = CJx ← 1KXℓ1

Xℓ3 = Xℓ2 ∪ Xℓ5

Xℓ4 = CJx ≤ 10KXℓ3

Xℓ5 = CJx ← x + 2KXℓ4

Xℓ6 = CJx > 10KXℓ3
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Computing the Least Fixpoint

X 0
ℓ1
= {}

X 1
ℓ1
= Asn X 2

ℓ1
= Asn X 3

ℓ1
= Asn

X 0
ℓ2
= {}

X 1
ℓ2
= {} X 2

ℓ2
= {ρ ∈ Asn | ρ(x) = 1} X 3

ℓ2
= {ρ ∈ Asn | ρ(x) = 1}

X 0
ℓ3
= {}

X 1
ℓ3
= {} X 2

ℓ3
= {} X 3

ℓ3
= {ρ ∈ Asn | ρ(x) = 1}

X 0
ℓ4
= {}

X 1
ℓ4
= {} X 2

ℓ4
= {} X 3

ℓ4
= {}

X 0
ℓ5
= {}

X 1
ℓ5
= {} X 2

ℓ5
= {} X 3

ℓ5
= {}

X 0
ℓ6
= {}

X 1
ℓ6
= {} X 2

ℓ6
= {} X 3

ℓ6
= {}
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X 0
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= {} X 1
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Computing the Least Fixpoint

The least fixpoint is reached after 10 iterations.

This way of computing the fixpoint is called Jacobi iterations.

ℓ1 x ← 1; ℓ2

while ℓ3x ≤ 10 do
ℓ4 x ← x + 2 ℓ5

doneℓ6

X 10
ℓ1

= Asn

X 10
ℓ2

= {ρ ∈ Asn | ρ(x) = 1}
X 10

ℓ3
= {ρ ∈ Asn | ρ(x) ∈ {1, 3, . . . , 11}}

X 10
ℓ4

= {ρ ∈ X 9
ℓ3
| ρ(x) ∈ {1, 3, . . . , 9}}

X 10
ℓ5

= {ρ ∈ X 9
ℓ4
| ρ(x) ∈ {3, . . . , 11}}

X 10
ℓ6

= {ρ ∈ X 9
ℓ3
| ρ(x) = 11}
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System of Equations

We create a system of equations over the same domain L → P(X → Z):

Xℓi = Fi ({Xℓ1 , . . . ,Xℓn})
1 ≤ i ≤ n

where Fi ∈ (L → P(Asn))→ (L → P(Asn)) to obtain a system of equation of the form:

Example

From Xℓ2 = CJi ← 1KXℓ1 to Xℓ2 = F2({Xℓ1 , . . . ,Xℓ6}) with F2 defined as:

F2({Xℓ1 , . . . ,Xℓ6}) ≜ {Xℓ1 ,CJi ← 1KXℓ1 , . . . ,Xℓ6}

Then, the fixpoint of Fn ◦ Fn−1 ◦ . . . ◦ F1 starting at {{}ℓ1 , . . . , {}ℓn} is

the unique least fixpoint.

(by Kleene theorem and continuity of all Fi ).
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Summary

Abstract interpretation answers precisely the questions we raised at the beginning:

• What is a program? The least fixpoint point of eq(S).

• What is a property? A subset of the environment P ∈ P(Asn).
Example: x < 12 is the property {ρ ∈ Asn | ρ(x) ∈ {1, 2, . . . , 11}}.

• What is the verification problem? An inclusion check: (lfp eq(S))ℓi ⊆ P.

Example: Xℓ6 = {ρ ∈ Asn | ρ(x) = 11} ⊆ {ρ ∈ Asn | ρ(x) ∈ {1, 2, . . . , 11}}

Note: We have focussed on a particular semantics called assertional forward reachability semantics, but there

exists other concrete semantics which are more or less precise (e.g. relational semantics, trace semantics).
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Small Issues...

• lfp eq(S) might only exists after an infinite number of iterations.

• Even if finite, the sets Xℓi can grow exponentially, and the number of iterations can be

very big.
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Abstract Semantics
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Ingredients of Abstract Interpretation

Let S be a program.

We want a mechanical procedure approximating lfp eq(S).

The ingredients are:

1. An abstract representation A♯ of P(Asn) such that the elements of A♯ are finitely

representable in a machine.

2. An abstract set of equations eq♯(S) such that lfp eq♯(S) is computable in a finite number

of steps.

3. Soundness: lfp eq(S) ⊆ γ(lfp eq♯(S)) where γ : A♯ → P(Asn).
⇒ We overapproximate the least fixpoint, meaning that we find all bugs but potentially

have false-positives due to the overapproximation.
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Abstract Domain
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Abstract Domain

⇒ The key of abstract interpretation is to work with abstractions of the concrete semantics.

Definition

An abstract domain is a lattice ⟨A♯,⊑,⊔,⊓,⊥,⊤,C♯J.K⟩ such that:

• Every element of A♯ is representable in a machine.

• The operations on A♯ are efficiently computable.

• C♯J.K is order-preserving.

The concrete and abstract semantics are connected by a Galois connection:

⟨P(Asn),⊆⟩ −−−→←−−−α
γ
⟨A♯,⊑⟩
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Interval Lattice

Definition

The lattice of interval ⟨I,⊑,⊔,⊓,⊥, [−∞,∞]⟩ is defined as:

I ≜ {[a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞}, a ≤ b} ∪ {⊥}

with the following operations:

• [a, b] ⊑ [c , d ]⇔ a ≥ c ∧ b ≤ d .

• [a, b] ⊔ [c , d ] ≜ [min(a, c),max(b, d)].

• [a, b] ⊓ [c , d ] ≜ [max(a, c),min(b, d)].

• We suppose that all intervals [a, b] created such that a > b are mapped to ⊥.

We also define projection functions ⌊[a, b]⌋ ≜ a and ⌈[a, b]⌉ ≜ b.
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Non-relational domains The interval domain

The interval lattice
Introduced by [Cous76].

B� def= { [a, b] | a ∈ I ∪ {−∞}, b ∈ I ∪ {+∞}, a ≤ b } ∪ {⊥�
b }

⊑

[-1,-1] [1,1][0,0] [9,9]...

[-∞,+∞]

......

[-1,0] [0,1]

[-1,1]

[1,9]... ......

[0,9]... ......

...

[-1,9]... ...

[-1,+∞] [0,+∞][-∞,9][-∞,1] ... .........

... ... ... ...

⊥

Note: intervals are open at infinite bounds +∞, −∞.
Course 3 Non-Relational Numerical Abstract Domains Antoine Miné p. 37 / 82



Abstract Interval Static Analysis

At each control point, we look for the set of all possible values of x :

abstract set of values of x
ℓ1 ⊤ℓ1

x ← 1; ℓ2 [1, 1]ℓ2
while ℓ3x ≤ 10 do [1, 1]ℓ3

ℓ4 [1, 1]ℓ4
x ← x + 2; ℓ5 [3, 3]ℓ5

doneℓ6

Loss of precision

Working in the abstract can result in weaker invariants:

• The second time we reach ℓ3, we have x 7→ [1..3].

• But 2 ∈ [1..3] although it is not a possible value!

• This interval analysis would be unable to prove that x ̸= 2 at location ℓ3.
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• This interval analysis would be unable to prove that x ̸= 2 at location ℓ3.
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Abstract Interval Static Analysis

At each control point, we look for the set of all possible values of x :

abstract set of values of x
ℓ1 ⊤ℓ1

x ← 1; ℓ2 [1, 1]ℓ2
while ℓ3x ≤ 10 do [1, 11]ℓ3

ℓ4 [1, 9]ℓ4
x ← x + 2; ℓ5 [3, 11]ℓ5

doneℓ6 [11, 11]ℓ6

Loss of precision

Working in the abstract can result in weaker invariants:

• The second time we reach ℓ3, we have x 7→ [1..3].

• But 2 ∈ [1..3] although it is not a possible value!

• This interval analysis would be unable to prove that x ̸= 2 at location ℓ3.
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Interval Abstract Domain

The abstract domain of interval is

I♯ ≜ ⟨X → I, ⊑̇, ⊔̇, ⊓̇, x ∈ X 7→ ⊥, x ∈ X 7→ [−∞,∞],C♯
I J.K⟩ where ⊑̇, ⊔̇, ⊓̇ are pointwise

interval operations.

The Galois connection with the concrete domain is given by:

• γI (σ) ≜ {ρ ∈ Asn | ∀x ∈ X , ρ(x) ∈ σ(x)}.
• αI (A) ≜ x ∈ X 7→

⊔
ρ∈A[ρ(x), ρ(x)].

Loss of precision

Let A = {{x 7→ 0, y 7→ 1}, {x 7→ 1, y 7→ 0}}, then:

γI (A) = {x 7→ [0, 1], y 7→ [0, 1]}

All relationships among variables are forgotten (this is called a Cartesian abstraction).
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Interval Abstract Semantics

Abstract Semantics of Expressions

Let E♯
I J.K : Expr × (X → I)→ I and σ ∈ X → I.

• E♯
I JxKσ ≜ σ(x)

• E♯
I JcKσ ≜ [c, c]

• E♯
I J−eKσ ≜ let [a, b] = E♯

I JeKσ in [−b,−a]

• E♯
I Je1 + e2Kσ ≜ let [a, b] = E♯

I Je1Kσ in

let [c, d ] = E♯
I Je2Kσ in [a+ c, b + d ]

Abstract Semantics of Commands

Let C♯
I J.K : Com × (X → I)→ (X → I) and σ ∈ X → I.

• C♯
I Jx ← eKσ ≜ σ[x 7→ E♯

I JeKσ]

• C♯
I Jx ≤ yKσ ≜ σ[x 7→ σ(x) ⊓ [−∞, ⌈σ(y)⌉]]

⊓̇ σ[y 7→ σ(y) ⊓ [⌊σ(x)⌋,∞]]
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Abstract Equational Semantics
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Abstract Semantics of Program

• At each location ℓ ∈ L, we compute its set of reachable environments X ♯
ℓ ∈ A♯.

• We create an equational system from the program such that its solution is {X ♯
ℓ1
, . . . ,X ♯

ℓn
}.

eq♯(ℓ1 x ← e ℓ2) ≜ {X ♯
ℓ2
= C♯Jx ← eKX ♯

ℓ1
}

eq♯(ℓ1 s1;
ℓ2 s2

ℓ3) ≜ eq♯(ℓ1 s1
ℓ2) ∪ eq♯(ℓ2 s2

ℓ3)

eq♯(ℓ1 if e1 ◦ e2 then ℓ2 s1
ℓ3 fi ℓ4) ≜

{X ♯
ℓ2
= C♯Je1 ◦ e2KX ♯

ℓ1
} ∪ eq♯(ℓ2 s1

ℓ3) ∪ {X ♯
ℓ4
= X ♯

ℓ3
⊔ C♯Je1 ̸ ◦ e2KX ♯

ℓ1
}

eq♯(ℓ1 while ℓ2 e1 ◦ e2 do ℓ3 s1
ℓ4 done ℓ5) ≜

{X ♯
ℓ2
= X ♯

ℓ1
⊔ X ♯

ℓ4
, X ♯

ℓ3
= C♯Je1 ◦ e2KX ♯

ℓ2
}

∪ eq♯(ℓ3 s1
ℓ4)

∪ {X ♯
ℓ5
= C♯Je1 ̸ ◦ e2KX ♯

ℓ2
}
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Abstract Fixpoint

Instead of working on the set of concrete values, we work on intervals.

ℓ1 i ← 1; ℓ2

while ℓ3 i ≤ 10 do
ℓ4 i ← i + 2 ℓ5

doneℓ6

X ♯
ℓ1
= ⊤

X ♯
ℓ2
= C♯

I Ji ← 1KX ♯
ℓ1

X ♯
ℓ3
= X ♯

ℓ2
⊔ X ♯

ℓ5

X ♯
ℓ4
= C♯

I Ji ≤ 10KX ♯
ℓ3

X ♯
ℓ5
= C♯

I Ji ← i + 2KX ♯
ℓ4

X ♯
ℓ6
= C♯

I Ji > 10KX ♯
ℓ3
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Computing the Abstract Least Fixpoint

X ♯0
ℓ1

= ⊥

X ♯1
ℓ1

= ⊤ X ♯2
ℓ1

= ⊤ X ♯3
ℓ1

= ⊤

X ♯0
ℓ2

= ⊥

X ♯1
ℓ2

= ⊥ X ♯2
ℓ2

= ⊤[x 7→ [1, 1]] X ♯3
ℓ2

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ3

= ⊥

X ♯1
ℓ3

= ⊥ X ♯2
ℓ3

= ⊥ X ♯3
ℓ3

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ4

= ⊥

X ♯1
ℓ4

= ⊥ X ♯2
ℓ4

= ⊥ X ♯3
ℓ4

= ⊥

X ♯0
ℓ5

= ⊥

X ♯1
ℓ5

= ⊥ X ♯2
ℓ5

= ⊥ X ♯3
ℓ5

= ⊥

X ♯0
ℓ6

= ⊥

X ♯1
ℓ6

= ⊥ X ♯2
ℓ6

= ⊥ X ♯3
ℓ6

= ⊥
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Computing the Abstract Least Fixpoint

X ♯0
ℓ1

= ⊥ X ♯1
ℓ1

= ⊤

X ♯1
ℓ1

= ⊤X ♯2
ℓ1

= ⊤ X ♯3
ℓ1

= ⊤

X ♯0
ℓ2

= ⊥ X ♯1
ℓ2

= C♯
I Jx ← 1KX ♯0

ℓ1

X ♯1
ℓ2

= ⊥X ♯2
ℓ2

= ⊤[x 7→ [1, 1]] X ♯3
ℓ2

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ3

= ⊥ X ♯1
ℓ3

= X ♯0
ℓ2
⊔ X ♯0

ℓ5

X ♯1
ℓ3

= ⊥X ♯2
ℓ3

= ⊥ X ♯3
ℓ3

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ4

= ⊥ X ♯1
ℓ4

= C♯
I Jx ≤ 10KX ♯0

ℓ3

X ♯1
ℓ4

= ⊥X ♯2
ℓ4

= ⊥ X ♯3
ℓ4

= ⊥

X ♯0
ℓ5

= ⊥ X ♯1
ℓ5

= C♯
I Jx ← x + 2KX ♯0

ℓ4

X ♯1
ℓ5

= ⊥X ♯2
ℓ5

= ⊥ X ♯3
ℓ5

= ⊥

X ♯0
ℓ6

= ⊥ X ♯1
ℓ6

= C♯
I Jx > 10KX ♯0

ℓ3

X ♯1
ℓ6

= ⊥X ♯2
ℓ6

= ⊥ X ♯3
ℓ6

= ⊥
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Computing the Abstract Least Fixpoint

X ♯0
ℓ1

= ⊥ X ♯1
ℓ1

= ⊤

X ♯2
ℓ1

= ⊤ X ♯3
ℓ1

= ⊤

X ♯0
ℓ2

= ⊥ X ♯1
ℓ2

= ⊥

X ♯2
ℓ2

= ⊤[x 7→ [1, 1]] X ♯3
ℓ2

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ3

= ⊥ X ♯1
ℓ3

= ⊥

X ♯2
ℓ3

= ⊥ X ♯3
ℓ3

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ4

= ⊥ X ♯1
ℓ4

= ⊥

X ♯2
ℓ4

= ⊥ X ♯3
ℓ4

= ⊥

X ♯0
ℓ5

= ⊥ X ♯1
ℓ5

= ⊥

X ♯2
ℓ5

= ⊥ X ♯3
ℓ5

= ⊥

X ♯0
ℓ6

= ⊥ X ♯1
ℓ6

= ⊥

X ♯2
ℓ6

= ⊥ X ♯3
ℓ6

= ⊥
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Computing the Abstract Least Fixpoint

X ♯0
ℓ1

= ⊥ X ♯1
ℓ1

= ⊤ X ♯2
ℓ1

= ⊤

X ♯2
ℓ1

= ⊤ X ♯3
ℓ1

= ⊤

X ♯0
ℓ2

= ⊥ X ♯1
ℓ2

= ⊥ X ♯2
ℓ2

= C♯
I Jx ← 1KX ♯1

ℓ1

X ♯2
ℓ2

= ⊤[x 7→ [1, 1]]X ♯3
ℓ2

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ3

= ⊥ X ♯1
ℓ3

= ⊥ X ♯2
ℓ3

= X ♯1
ℓ2
⊔ X ♯1

ℓ5

X ♯2
ℓ3

= ⊥ X ♯3
ℓ3

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ4

= ⊥ X ♯1
ℓ4

= ⊥ X ♯2
ℓ4

= C♯
I Jx ≤ 10KX ♯1

ℓ3

X ♯2
ℓ4

= ⊥X ♯3
ℓ4

= ⊥

X ♯0
ℓ5

= ⊥ X ♯1
ℓ5

= ⊥ X ♯2
ℓ5

= C♯
I Jx ← x + 2KX ♯1

ℓ4

X ♯2
ℓ5

= ⊥X ♯3
ℓ5

= ⊥

X ♯0
ℓ6

= ⊥ X ♯1
ℓ6

= ⊥ X ♯2
ℓ6

= C♯
I Jx > 10KX ♯1

ℓ3

X ♯2
ℓ6

= ⊥X ♯3
ℓ6

= ⊥
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Computing the Abstract Least Fixpoint

X ♯0
ℓ1

= ⊥ X ♯1
ℓ1

= ⊤ X ♯2
ℓ1

= ⊤

X ♯3
ℓ1

= ⊤

X ♯0
ℓ2

= ⊥ X ♯1
ℓ2

= ⊥ X ♯2
ℓ2

= ⊤[x 7→ [1, 1]]

X ♯3
ℓ2

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ3

= ⊥ X ♯1
ℓ3

= ⊥ X ♯2
ℓ3

= ⊥

X ♯3
ℓ3

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ4

= ⊥ X ♯1
ℓ4

= ⊥ X ♯2
ℓ4

= ⊥

X ♯3
ℓ4

= ⊥

X ♯0
ℓ5

= ⊥ X ♯1
ℓ5

= ⊥ X ♯2
ℓ5

= ⊥

X ♯3
ℓ5

= ⊥

X ♯0
ℓ6

= ⊥ X ♯1
ℓ6

= ⊥ X ♯2
ℓ6

= ⊥

X ♯3
ℓ6

= ⊥
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Computing the Abstract Least Fixpoint

X ♯0
ℓ1

= ⊥ X ♯1
ℓ1

= ⊤ X ♯2
ℓ1

= ⊤ X ♯3
ℓ1

= ⊤

X ♯3
ℓ1

= ⊤

X ♯0
ℓ2

= ⊥ X ♯1
ℓ2

= ⊥ X ♯2
ℓ2

= ⊤[x 7→ [1, 1]] X ♯3
ℓ2

= C♯
I Jx ← 1KX ♯2

ℓ1

X ♯3
ℓ2

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ3

= ⊥ X ♯1
ℓ3

= ⊥ X ♯2
ℓ3

= ⊥ X ♯3
ℓ3

= X ♯2
ℓ2
⊔ X ♯2

ℓ5

X ♯3
ℓ3

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ4

= ⊥ X ♯1
ℓ4

= ⊥ X ♯2
ℓ4

= ⊥ X ♯3
ℓ4

= C♯
I Jx ≤ 10KX ♯2

ℓ3

X ♯3
ℓ4

= ⊥

X ♯0
ℓ5

= ⊥ X ♯1
ℓ5

= ⊥ X ♯2
ℓ5

= ⊥ X ♯3
ℓ5

= C♯
I Jx ← x + 2KX ♯2

ℓ4

X ♯3
ℓ5

= ⊥

X ♯0
ℓ6

= ⊥ X ♯1
ℓ6

= ⊥ X ♯2
ℓ6

= ⊥ X ♯3
ℓ6

= C♯
I Jx > 10KX ♯2

ℓ3

X ♯3
ℓ6

= ⊥
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Computing the Abstract Least Fixpoint

X ♯0
ℓ1

= ⊥ X ♯1
ℓ1

= ⊤ X ♯2
ℓ1

= ⊤ X ♯3
ℓ1

= ⊤
X ♯0

ℓ2
= ⊥ X ♯1

ℓ2
= ⊥ X ♯2

ℓ2
= ⊤[x 7→ [1, 1]] X ♯3

ℓ2
= ⊤[x 7→ [1, 1]]

X ♯0
ℓ3

= ⊥ X ♯1
ℓ3

= ⊥ X ♯2
ℓ3

= ⊥ X ♯3
ℓ3

= ⊤[x 7→ [1, 1]]

X ♯0
ℓ4

= ⊥ X ♯1
ℓ4

= ⊥ X ♯2
ℓ4

= ⊥ X ♯3
ℓ4

= ⊥
X ♯0

ℓ5
= ⊥ X ♯1

ℓ5
= ⊥ X ♯2

ℓ5
= ⊥ X ♯3

ℓ5
= ⊥

X ♯0
ℓ6

= ⊥ X ♯1
ℓ6

= ⊥ X ♯2
ℓ6

= ⊥ X ♯3
ℓ6

= ⊥
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Computing the Least Fixpoint

Similarly to the concrete fixpoint, the abstract fixpoint is reached after 10 iterations.

ℓ1 x ← 1; ℓ2

while ℓ3x ≤ 10 do
ℓ4 x ← x + 2 ℓ5

doneℓ6

X 10
ℓ1

= ⊤
X 10

ℓ2
= ⊤[x 7→ [1, 1]]

X 10
ℓ3

= ⊤[x 7→ [1, 11]]

X 10
ℓ4

= X 9
ℓ3
[x 7→ [1, 9]]

X 10
ℓ5

= X 9
ℓ4
[x 7→ [3, 11]]

X 10
ℓ6

= X 9
ℓ3
[x 7→ [11, 11]]
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Unbounded Loop

The previous computation of the fixpoint terminates in a finite number of steps, but that is not the

case in general.

Suppose we bound the loop by n:

ℓ1 x ← 1; ℓ2

while ℓ3x ≤ n do
ℓ4 x ← x + 2 ℓ5

doneℓ6

Xm
ℓ1

= ⊤
Xm

ℓ2
= ⊤[x 7→ [1, 1]]

Xm
ℓ3

= ⊤[x 7→ [1, n + 1]]

Xm
ℓ4

= Xm−1
ℓ3

[x 7→ [1, n − 1]]

Xm
ℓ5

= Xm−1
ℓ4

[x 7→ [3, n + 1]]

Xm
ℓ6

= Xm−1
ℓ3

[x 7→ [n + 1, n + 1]]

This example supposes we know n

• What if n is a very large constant? Slow convergence

• Worst, what if n is a variable such that n 7→ [−∞,∞] in the environment? Convergence at

infinity only

• Question: What condition on A♯ would allow to always converge in finitely many steps?
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Unbounded Loop

The previous computation of the fixpoint terminates in a finite number of steps, but that is not the

case in general.

Suppose we bound the loop by n:

ℓ1 x ← 1; ℓ2

while ℓ3x ≤ n do
ℓ4 x ← x + 2 ℓ5

doneℓ6

Xm
ℓ1

= ⊤
Xm

ℓ2
= ⊤[x 7→ [1, 1]]

Xm
ℓ3

= ⊤[x 7→ [1, n + 1]]

Xm
ℓ4

= Xm−1
ℓ3

[x 7→ [1, n − 1]]

Xm
ℓ5

= Xm−1
ℓ4

[x 7→ [3, n + 1]]

Xm
ℓ6

= Xm−1
ℓ3

[x 7→ [n + 1, n + 1]]

This example supposes we know n

• What if n is a very large constant? Slow convergence

• Worst, what if n is a variable such that n 7→ [−∞,∞] in the environment? Convergence at

infinity only

• Question: What condition on A♯ would allow to always converge in finitely many steps? 35



Widening

Definition

Let ⟨A♯,⊑⟩ be an abstract domain.

A widening is a function ∇ : A♯ × A♯ → A♯ such that for all x , y ∈ A♯:

x ⊑ x∇y y ⊑ x∇y

We say that ∇ is terminating if for any increasing sequence x1 ⊑ x2 ⊑ . . . and arbitrary

sequence y1, y2, . . . such that ∀k ∈ N, xk+1 = xk∇yk , there exists i ∈ N such that x i+1 = x i .

Interval widening

Let’s define a widening over intervals (push unstable bounds to infinities):

• ⊥∇x ≜ x∇⊥ ≜ x

• [a, b]∇[c, d ] ≜ [L a > c −∞ a M, L b < d ∞ b M]
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Interval Widening

ℓ1 i ← 1; ℓ2

while ℓ3 i ≤ n do
ℓ4 i ← i + 2 ℓ5

doneℓ6

X ♯k+1
ℓ1

= ⊤
X ♯k+1

ℓ2
= C♯

I Ji ← 1KX ♯k
ℓ1

X ♯k+1
ℓ3

= X ♯k
ℓ3
∇ X ♯k

ℓ2
⊔ X ♯k

ℓ5

X ♯k+1
ℓ4

= C♯
I Ji ≤ 10KX ♯k

ℓ3

X ♯k+1
ℓ5

= C♯
I Ji ← i + 2KX ♯k

ℓ4

X ♯k+1
ℓ6

= C♯
I Ji > 10KX ♯k

ℓ3

Focus on X ♯
ℓ3

X ♯2
ℓ3

= ⊥∇⊥ = ⊥
X ♯3

ℓ3
= X ♯2

ℓ3
∇⊤[x 7→ [1, 1]] = ⊥∇⊤[x 7→ [1, 1]] = ⊤[x 7→ [1, 1]]

X ♯4
ℓ3

= X ♯3
ℓ3
∇⊤[x 7→ [1, 3]] = ⊤[x 7→ [1, 1]]∇⊤[x 7→ [1, 3]] = ⊤[x 7→ [1,∞]]

X ♯5
ℓ3

= X ♯4
ℓ3
∇⊤[x 7→ [1,∞]] = ⊤[x 7→ [1,∞]]∇⊤[x 7→ [1,∞]] = ⊤[x 7→ [1,∞]]

Widening helps to enforce convergence at the cost of a loss of
precision. 37



Soundness
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Soundness

Let ⟨C ,≤⟩ be the concrete domain and ⟨A,⊑⟩ the abstract domain.

Definition

• A transformer is an order-preserving function f : C → C (e.g., CJ.K or eq(.)).

• An abstract transformer is an order-preserving function f : A→ A (e.g., C♯J.K or eq♯(.)).

Soundness: lfp≤ f ≤ γ(lfp⊑ f )
(we say lfp⊑ f is a sound fixpoint overapproximation of lfp≤ f .)

What are the conditions required on A and its abstract transformers to satisfy soundness?
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Soundness

Theorem (Sound transformer abstraction [Cou21] Th. 18.3)

If ⟨C ,≤⟩ −−−→←−−−α
γ
⟨A,⊑⟩ then ⟨C ↗−−→ C , ≤̇⟩ −−−→←−−−−→α

−→γ
⟨A ↗−−→ A, ⊑̇⟩ with:

−→α (f ) ≜ α ◦ f ◦ γ
−→γ (f ) ≜ γ ◦ f ◦ α

To abstract a least fixpoint α(lfp≤ f ), we abstract its transformer into an abstract transformer

α ◦ f ◦ γ ∈ A→ A.

From concrete to abstract transformers

We could define C♯
I Jx ≤ yK ≜ α ◦ CJx ≤ yK ◦ γ.
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Soundness

Theorem (Least fixpoint overapproximation in a complete lattice [Cou21] Th. 18.10)

Let ⟨C ,≤⟩ and ⟨A,⊑⟩ be complete lattices, ⟨C ,≤⟩ −−−→←−−−α
γ
⟨A,⊑⟩ and f ∈ C → C

order-preserving.

Then lfp≤ f ≤ γ(lfp⊑ α ◦ f ◦ γ).

Proof.

lfp≤ f

=
∧
{x ∈ C | f (x) ≤ x} (by Tarski’s fixpoint theorem)

≤
∧
{γ(x) | f (γ(x)) ≤ γ(x)}

= γ(
d
{x ∈ A | f (γ(x)) ≤ γ(x)}) (γ preserves arbritrary meet)

= γ(
d
{x ∈ A | (α ◦ f ◦ γ)(x) ⊑ x}) (by ⟨C ,≤⟩ −−−→←−−−α

γ
⟨A,⊑⟩)

= γ(lfp⊑ α ◦ f ◦ γ) (by Tarski’s fixpoint theorem)
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Soundness

α ◦ f ◦ γ is convenient from a mathematical perspective but not usable in practice as α, γ and

f might not be computable.

Hence, we approximate this definition.

Theorem ([Cou21] Th. 18.7)

Let ⟨C ,≤⟩ be a complete lattice and f , g ∈ C → C order-preserving.

If f ≤̇ g then lfp≤ f ⊑ lfp≤ g.

Corollary

Let α ◦ f ◦ γ ⊑̇ f . Then lfp≤ f ≤ γ(lfp⊑ f ).

Proof.

By Th. 18.7 and Th. 18.10.
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Other Concepts of Abstract Interpretation
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Many techniques to improve precision

• Various abstract domains with different precision/efficiency tradeoff (replacing intervals

in the previous example).

• Various products of abstract domains to combine their strengths.

• More efficient fixpoint algorithms (narrowing, chaotic iterations, . . . ).

• . . .
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Course organisation

Course plan (2/8)
Bricks of abstraction: numerical domains

simple domains

x

y

Intervals
x ∈ [a, b]

x

y

Congruences
x ∈ aZ + b

relational domains

x

y

Octagons
±x ± y ≤ c

x

y

Polyhedra�
i
αi xi ≤ β

specific domains

x

y

Ellipsoids
digital filters

t

y

Exponentials
rounding errors
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Conclusion
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Universality of Lattice Theory and Abstract Interpretation

Abstraction and approximation are two central concepts in computer science. Abstract

interpretation captures those precisely, thus has many applications beyond program analysis:

• Constraint reasoning.

• Neural network verification.

• (Gradual) typing.

• Conflict-free replicated data types (CRDTs).

• Parallel computing.
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Resources

• MPRI class of Antoine Miné:

https://www-apr.lip6.fr/~mine/enseignement/mpri/2023-2024/ (two slides

stolen from this class).

• Two recent books:
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