Abstract Interpretation

LATTICE THEORY FOR PARALLEL PROGRAMMING

Pierre Talbot
pierre.talbot@uni.lu

10th December 2024

University of Luxembourg

UNIVERSITE DU
LUXEMBOURG

Costly Software Accidents

In 1996, the explosion of Ariane 501, which took ten years and $7 billion to build.

Costly Software dents

Bug in fMRI software calls 15 years of research into question

Popular pieces of software for fMRI were found to have false positive rates up to 70%

TRENDING NOW

Three of the most popular pieces of software for fMRI — SPM, FSL and AFNI — were all
found to have false positive rates of up to 70 per cent. These findings could invalidate
"up to 40,000 papers", researchers claim.

PRWeek

home

How did you survive the Great Twitter
Outage of 2016¢

Well, that's awkward. #twitterdown was the top trending topic in the US late Tuesday morning.

What Can We Do?

Nothing but it would be irresponsable.

COMMUNICATIONS
“ACM

Responsible Programming

By Vinton G. Cerf

Posted Jul 12014

“People who write software should have a clear sense of responsibility for its reliable

operation and resistance to compromise and error.”*

Ihttps://cacm.acm.org/opinion/responsible-programming/

https://cacm.acm.org/opinion/responsible-programming/

Know Your Limits...

OK, we should verify software but we should also know our limits...

Undecidability

By Rice's theorem, a static analyzer cannot have all of the following properties:

e General: works on Turing-complete program.
e Automated: does not require human intervention.
e Sound: find all bugs.

e Complete: all bugs reported are true bugs.

General, semi-automated, (sometimes) complete but unsound (e.g., unit testing).

A Junits

The 5th major version of the programmer-friendly
testing framework for Java and the VM

B User Guide) code & Issues @ Support JUnit

“Program testing can be used to show the presence of bugs, but never to show their
absence!” (Edsger Dijkstra).

Bug Finding

General, automated, incomplete and unsound (e.g. Coverity, CodeSonar).

COVERITY SCAN

Find and fix defects in your Java, C/IC++, C#,
avaScript, Ruby, or Python open source
project for free

" Test every line of code and potential execution path.

" The root cause of each defect is clearly explained,
making it easy to fix bugs

v Integrated with

Additionally, Synopsys's implementation of static analysis can follow all the possible paths of execution through source
code (including interprocedurally) and find defects and vulnerabilities caused by the conjunction of statements that are
not errors independent of each other.

Model-Checking

Non-general (finite state model), semi-automated, complete and sound.

EDMUND M. CLARKE, E. ALLEN EMERSON, JOSEPH SIFAKIS
Model Checking: An Automated Quality Assurance Method

Theorem Proving

General, non-automated, complete and sound (e.g., Lean, Coq).
But require human intervention to provide invariants (time consuming and require expertise).

Success story: Compcert, certified C compiler.

11
P : nat | m < pe & prime po

m:{p | m<p & prine p}

vPlp pr_p p_dv_m

COMPCERT

logn_rec p m m o

\ Schommer 7

P mainconp-190° G @0A0 —NORMAL— _ C)maxmedenes

Abstract Interpretation

General, automated, incomplete and sound.

Success story: Astrée, prove absence of bugs in synchronous
control/command aerospace software (Airbus).

Invented by Patrick and Radhia Cousot in the seventies.?

?Patrick Cousot and Radhia Cousot. “Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints”. In: POPL 77'.

Simple Example: Pop Front

int pop_front(int* a, size_t& n) {
int front = a[0];
for(int i = 0; i < n; ++i) {
ali - 1] = a[il;
}
n--;
return front;

This program has (at least) three bugs.

Simple Example: Pop Front

int pop_front(int* a, size_t& n) {
int front = a[0];
for(int i = 0; i < n; ++i) {
ali - 1] = a[il;
}
n--;
return front;

This program has (at least) three bugs.

e [nvalid memory access: a[0] when n=0.
e [nvalid memory access: ali - 1] when /i =0.

e Overflow: ++i can overflow since we can have n > INT MAX.

Simple Example: Pop Fro

int pop_front(int* a, size_t& n) {
int front = a[0];
for(int i = 0; i < n; ++i) {
ali - 1] = alil;

n--;
return front;

Let's run MOPSA, a static analyzer, on this program:
mopsa-c pop_front.c

pop_front.c: In function 'main': pop_front.c: In function 'main':
pop_front.c:12.14- warning: Invalid memory access Mpop_front.c:14.4-12:

12: int fir 8 = a[i]l;

pop_front.c: In function 'main':
pop_front.c:13.24-2' rning: Integer overflow

13: for(int i = 1; i <

10

Simple Example: Push Fron

Corrected version:

int pop_front(int* a, size_t& n) {
if(n == 0) return -1;
int front = a[0];
for(size_t i = 1; i < n; ++i) {
ali - 11 = alil;

n--;

return front;

132 total,
total,

11

Abstract Interpretation

Abstract interpretation answers precisely elementary questions:

e What is a program?
e What is a property of a program?

e What is the verification problem?
We now formally introduce abstract interpretation:

e Concrete semantics: answer the questions above.

e Abstract semantics: design effective verification algorithm.

12

Concrete Semantics

(S) == X + Expr assignment
| if Expr o Expr then S else S fi conditional
| while Expr o Expr do S done loop
| S;S sequence

(Expr) == X variable
| —Expr negation
| Expr o Expr arithmetic operation
| ¢ constant ¢ € 7

where o € {=,#,<,<,>,>,...}ando € {+,—, /,%,%,...}.

13

What is a Program?

Let’s define:

e X a countable set of variables.
e Asn = X — Z the set of assignments (aka. valuation, environments).

o L ={l,...,0,} the set of control points.

At each control point, we look for the set of all possible values of x:

set of values of x

a1 Zk‘l
x < 1;% {1},
while “x < 10 do {1},
- {1}&
X x+2;6 {3}ss
done’s

14

What is a Program?

Let’s define:

e X a countable set of variables.
e Asn = X — Z the set of assignments (aka. valuation, environments).

o L ={l,...,0,} the set of control points.

At each control point, we look for the set of all possible values of x:

set of values of x

a1 Zk‘l
x < 1;% {1},
while “x < 10 do {1,3},,
- {173}&
X x+2;6 {3,5},
done’s

14

What is a Program?

Let’s define:

e X a countable set of variables.
e Asn = X — Z the set of assignments (aka. valuation, environments).

o L ={l,...,0,} the set of control points.

At each control point, we look for the set of all possible values of x:

set of values of x

01 Zél
x 1,0 {1},
while “x < 10 do {1,3,5,7,9,11},,
b {1,3,5,7,9},,
X x+2;0 {3,5,7,9,11},,
done’s {11},

14

Property of Programs

set of values of x

a1 Zél
x < 1;0 {1},
while “x < 10 do {1,3,5,7,9,11},,
b {1,3,5,7,9},,
X x+2;6 {3,5,7,9,11},,
done’s {11},

The sets Sy, are called invariants.

They are the strongest possible, there is no set S; such that S, C S, .

A property has the same domain than an invariant, for instance:

assert(x >= 11) after /g is the property {11,12,13,14,15,...}.

Clearly this property is validated since {11}, C {11,12,13,14,15,...} (the program is
even more restrictive than the property checked).

How to automatically compute the sets Sy, 7
15

Semantics of Atomic Commands

We define the semantics on expressions and commands (Com) ::= X < Expr | Expr o Expr.

e Semantics of expressions: E[.] : Expr x Asn — Z.

e Semantics of commands: C[.] : Com x P(Asn) — P(Asn).
C[.] is similar to F[.] (defined for abstract satisfaction), but adapted to a programming language with

assignment (and no logical quantifiers).

Let A={{x— 1,y = 10}, {x+— 2,y — 11}}.

e Simple arithmetic: E[x x y][{x — 4,y — 2} = 8.
e Assignment: C[x < 1JA= {{x — 1,y — 10}, {x — 1,y — 11}}.
e Filtering: C[x # 2]JA= {{x+— 1,y + 10}}.

Semantics of Atomic Commands

* E[x]p = p(x)

o E[-e]p £ —E[e]p

o Efeioe]p £ Ela]poEle]p (o€ {+,— /%%, ...})
e E[c]p = ¢

Semantics of Commands

o Clx « e]A 2 {p[x — E[e]p] | p € A}
o Cleoe]A 2 {pcAlE[a]poEle]p} (c€{=#<,<>,2,...})

Semantics of Program

e At each location ¢ € L, we compute its set of reachable environments Xy C Asn.

e We create an equational system from the program such that its solution is {X,, ..., X, }.

eq(” x+ e) £ {X,, = C[x «+ e X}

eq(" s1;” 5) £ eq(" 51 ?)Ueq(” 5 ©)

eq(“ if eg o ey then 2 5, & fi 4) &

{Xs, = Cle1 0] X, } U eq(53 @) U {X), = X, UC[er £ e2] Xy, }

while 2 ¢; 0 e, do ©* 5, “ done 5) =

{Xe, = X, UX,,, Xy, = Cle 0] A, }
Ueq(™ s)
U {Xy, = Cler £] Ay, }

eq("

18

Equational Semantics lllustrated

e At each location ¢ € L, we compute its set of reachable environments Xy C Asn.

e We create an equational system from the program such that its solution is {X,,..., A, }.
Xy, = Asn
hox 10 Xy, = Clx + 1] Xy,
while “x < 10 do Xy, = X, U X,
bx e x 4275 X, = C[[X < IOHX&
done’s Xy, = Cx + x + 2] &y,

Xfe = C[[X >].Oﬂ‘)(g3

19

Computing the Least Fixpoint

Xl/ol = {}
X =1}
xp ={}
x5 ={}
X/i = {}

xp ={}

20

Computing the Least Fixpoint

xp ={} X} = Asn

x) ={} X} =Clx + 1]x2

X2 ={} XL =xux)

Xg ={} XZIA =C[x < 10]}.)((?3
Xp =1} Xj = Clx < x+2]x2
X& ={} Xélﬁ =C[x > 10]})(2

20

Computing the Least Fixpoint

xp ={} X} = Asn
xp =1{} X ={}
xp ={} L =1{}
xp = {} X, =1{}
xp =1{} X =1{}
xp ={} X, =1{}

20

Computing the Least Fixpoint

xp ={} X} = Asn X7 = Asn

x) ={} X ={} X2 =Clx « 1]&}

xp =1{} g, =1} X7 = X U X

XX, = {} Xz{, ={} Xti =C[x < 10]]X1413
Xp =1} X, ={} &7 = Cx « x+2]&},

Xfﬁ ={} Xélﬁ ={} Xézﬁ =C[x > 10]]2((,,13

20

Computing the Least Fixpoint

xp ={} X} = Asn X? = Asn

X} A= X —{pehsm|px-1}
M- - -y

o) x-(&-{

Xﬁi =i leg, = X/i =

W= =0 A={

20

Computing the Least Fixpoint

1
X,

1
X =

= Asn

, ={p€Asn|p(x) =1}

={}

J:{}
» = {1}

={}

3
X
3
X,
3
X,

3
X,
3
X,

= Asn
=C[x + 1HXZ21

— 2 2
L = X, U A

— C[x < 10)A2
=Clx « x+2]A2
= C[x > 10]x7.

20

Computing the Least Fixpoint

Xl/ol = {}
xp =1}
xp ={}
x5, ={}
Xﬁi = {}
X =1}

X} = Asn
X/,lz - {}
Xf,13 = {}
Xz{, = {}
leg, = {}
X, ={}

X? = Asn

X2 ={p€Asn|p(x)=1}
A2 ={}

Xti = {}

X/i = {}

X, =1{}

X} = Asn

X} ={p € Asn|p(x) =1}
X2 ={p€Asn|p(x)=1}
x5 =1}

AL =1{}

xp = 1{}

20

Computing the Least Fixpoint

The least fixpoint is reached after 10 iterations.
This way of computing the fixpoint is called Jacobi iterations.

X% = Asn
hox 1% X} ={pehsn|px)=1}
while “x < 10 do X}?={peAsn|p(x)e{1,3,...,11}}
b x e x+25 X0 ={pe &l |p(x)e{L,3,...,9}}
done’s X = {pe X3 | plx) € (3,...,11}}
X2 ={pe Xl |p(x)= 11}

21

System of Equations

We create a system of equations over the same domain £ — P(X — Z):

Xo. = Fi({Xe,, -, X0, })
1<i<n

where F; € (L — P(Asn)) — (L — P(Asn)) to obtain a system of equation of the form:

From X, = C[[i + 1] Xy, to Xy, = F({X,, ..., X, }) with Fy defined as:

Fo({ X, ..., X)) = { X, Cli + 1], ..., X}

System of Equations

We create a system of equations over the same domain £ — P(X — Z):

Xo. = Fi({Xe,, -, X0, })
1<i<n

where F; € (L — P(Asn)) — (L — P(Asn)) to obtain a system of equation of the form:

From X, = C[[i + 1] Xy, to Xy, = F({X,, ..., X, }) with Fy defined as:

Fo({ X, ..., X)) = { X, Cli + 1], ..., X}

Then, the fixpoint of F, 0 F,_10...0 Fy starting at {{}s,,...,{}¢,} is
the unique least fixpoint.

(by Kleene theorem and continuity of all F;).

Abstract interpretation answers precisely the questions we raised at the beginning:

e What is a program? The least fixpoint point of eq(S).

e What is a property? A subset of the environment P € P(Asn).
Example: x < 12 is the property {p € Asn | p(x) € {1,2,...,11}}.

e What is the verification problem? An inclusion check: (Ifp eq(S)), C P.
Example: X;; = {p € Asn | p(x) =11} C {p € Asn | p(x) € {1,2,...,11}}

Note: We have focussed on a particular semantics called assertional forward reachability semantics, but there

exists other concrete semantics which are more or less precise (e.g. relational semantics, trace semantics).

23

e Ifp eq(S) might only exists after an infinite number of iterations.

e Even if finite, the sets &), can grow exponentially, and the number of iterations can be
very big.

24

Abstract Semantics

Ingredients of Abstract Interpretation

Let S be a program.
We want a mechanical procedure approximating Ifp eq(S).
The ingredients are:

1. An abstract representation A* of P(Asn) such that the elements of A% are finitely
representable in a machine.

2. An abstract set of equations eq!(S) such that Ifp eq?(S) is computable in a finite number
of steps.

3. Soundness: Ifp eq(S) C y(Ifp eq?(S)) where v : A* — P(Asn).
= We overapproximate the least fixpoint, meaning that we find all bugs but potentially
have false-positives due to the overapproximation.

25

Abstract Domain

Abstract Domain

= The key of abstract interpretation is to work with abstractions of the concrete semantics.

An abstract domain is a lattice (A, T, 1, M, 1, T, C*[.]) such that:

e Every element of A? is representable in a machine.
e The operations on Af are efficiently computable.

e C![] is order-preserving.

The concrete and abstract semantics are connected by a Galois connection:

(P(Asn), <) == (A%,C)

Interval Lattice

Definition
The lattice of interval (Z,C, LI, M, L, [—00, cc]) is defined as:

T 2 {[a,b]|acZU{-x},beZU{o0},a< byU{L}
with the following operations:

o [a,b]C [c,d]<a>cAb<d.

e [a,b]U[c,d] £ [min(a,c), max(b,d)].

e [a,b]M[c,d] £ [max(a,c), min(b,d)].

e We suppose that all intervals [a, b] created such that a > b are mapped to L.

We also define projection functions |[a, b]| £ a and [[a, b]] £ b.

Non-relational domains The interval domain

The interval lattice

Introduced by [Cous76].
B! ¥ {[a,b]laclU{—oc0}, belU{+oc},a<b} U {1}}

[-o0,+0]

v [0 [-00,9] v [-L+e] [0,400] o

[-1,9]
A
| o L] . 0,9)

n

NAWAY:

. [10] [0,1] ... [1,9] ...

AVAVAYS

[1 1] [0,0] [1,1] ... [9,9] ...

Note: intervals are open at infinite bounds +o00, —oc.

Course 3 on-| iona nerical Abstract Domains Antoine Miné

Abstract Interval Static Analysis

At each control point, we look for the set of all possible values of x:

abstract set of values of x

2 T,
x <+ 1;% [1,1],
while “x < 10 do (1,1],
. [la 1]54
X x+2;6 [3,3]s
done's

28

Abstract Interval Static Analysis

At each control point, we look for the set of all possible values of x:

abstract set of values of x

01 Tfl
X 1;% [1,1],
while “x <10do [1,1]U[3,3] = [1,3].,
b [la 3]54
X x+2;6 [3,5]¢,
done’s

28

Abstract Interval Static Analysis

At each control point, we look for the set of all possible values of x:

abstract set of values of x

o T,
x ¢ 1;% [1,1]e,
while “x < 10 do [1,11],,
b [la 9]54
X x+2;% [3,11],,
done’s [11,11],,

Loss of precision

Working in the abstract can result in weaker invariants:

e The second time we reach /3, we have x — [1..3].
e But 2 € [1..3] although it is not a possible value!

e This interval analysis would be unable to prove that x # 2 at location /5.

Interval Abstract Domain

The abstract domain of interval is
I &2 (X - I,CUM,x € X = L,x€ X [—00,00], C?[[]]) where C, LI, are pointwise
interval operations.

The Galois connection with the concrete domain is given by:

e v(c) £ {p€Asn|V¥xc X, p(x) € oa(x)}
o i(A) £ x € X > Lpealp(x), o001

Loss of precision

Let A= {{x— 0,y — 1}, {x— 1,y — 0}}, then:
’YI(A) = {X = [Ov 1]ay = [07 1]}

All relationships among variables are forgotten (this is called a Cartesian abstraction).

Interval Abstract Semantics

Abstract Semantics of Expressions

Let EY[.]: Expr x (X = Z) > Zand o € X — T.

o Ef[x]o £ o(x)
e El[c]o 2 [c,q]
e El[-eo £ let [a, b] = E![e]o in [-b, —a]

e Ellei + e]o £ let [a,b] = El[ei]o in
let [c,d] = E![e]o in [a+ ¢, b+ d]

Abstract Semantics of Commands

Let C![.]: Comx (X - Z) = (X = Z)and 0 € X — T.

o Cl[x « e]o £ o[x — E![e]o]

o Ci[x < ylo 2 ofx = o(x) M [0, [o(y)]]

Moly = o(y) N {lo(x)], o]
30

Abstract Equational Semantics

Abstract Semantics of Program

e At each location ¢ € L, we compute its set of reachable environments Xzﬁ c Al

e We create an equational system from the program such that its solution is {Xfl, ceey Xfﬂn}.

eqf(t x e 2) £ (X} = Cl[x + e]A}}

eqﬁ(fl 51;52 S 53) L eqﬁ(ﬁ s1 Z2) Ueqﬁ(fz S 53)

eq’i(/‘1 if €1 0 6 then £ S1 & fi 44) £

(X! =Clero e Xl } U eq?(2 st %) U {&] = X} L Clew g] X))

while 2 e; 0 ; do ©* 5, “ done) =

{xf =xf LU &L, &) =Cile o] Xf
U eq?(s;)
U {X] =Clle; 6 e] X] }

31

Abstract Fixpoint

Instead of working on the set of concrete values, we work on intervals.

le:‘l'
bt X}, = Clli + 1]}
xl=x}uaxl

while %/ < 10 do
boje jy2b
done’s

Xf — cﬁ[[, < 10]]2(ﬁ
X,? = Cﬁ[[/ — i +2]]Xi
xl =cifi > 10)x]

32

Computing the Abstract Least Fixpoint

X =
2 =
X0 =1
X =1
X =1

33

Computing the Abstract Least Fixpoint

x° = xft=T

X,ﬁlo =1 Xfl = Cj[x « 1]x/°
X =1 X =xPuxl

X =1 X = Clx < 10)xf°
xP =1 X = Chx < x + 2] xf°
xP=1 Xt = Cl[x > 10)xf°

33

Computing the Abstract Least Fixpoint

x° = Xt =
X0 = Py
X0 =1 X}? =1
X =1 xit=1
X =1 it =

33

Computing the Abstract Least Fixpoint

x° = Xt = AR -7

X,ﬁlo =1 Xfl =1 ng = Cl[x « 1]}
xR =1 X}? =1 xP2=xtuxl

X =1 xit=1 X2 = Cix < 10)
X =1 Xl = X2 = Clx + x+2]xf
xP=1 X}Zl = X2 = Cx > 10) 47

33

Computing the Abstract Least Fixpoint

X = Xt = =T
X,ﬁlo =1 Xfl =1 ng = T[x — [1,1]]
X0 =1 X}? =1 X2 =1
X =1 xit=1 XP=1
X =1 Xl = AR -

X0 =1 xit = EY

33

Computing the Abstract Least Fixpoint

X =
x_
0
X =1
X =1
X =1
X0 =1

=T
X2 = T[x s [1,1]]
XP =1
XP=1
AR -1
X}? =1

=T

ng = Cf[x « 1]/
X2 =xPuxf

X = Cix < 10) 4
XP = Clx + x + 2]
P = Cl[x > 10]x

33

Computing the Abstract Least Fixpoint

X =

X0 =
0

X =1
X =1
X =1
X0 -

Xt =
pY
i
kf_L
xit=1

it =

AR -7
xﬁ—rhwu1n
xP2=1
XP=1
XW_L
Xﬁ_L

AR -7
X T [L1]]
xg_ThHuﬂ]

xB =1
Xm—L
X&

33

Computing the Least Fixpoint

Similarly to the concrete fixpoint, the abstract fixpoint is reached after 10 iterations.

b x1;0

while ©#x < 10 do
bx—x426

done’s

PUCS
X0 = Tlx s [1,1]]
X1 = T[x - [1,11]]
x/{p X2 [x — [1,9]]
X1 = A9 [x o [3,11]]

Xklﬁo = Xi[x — [11,11]]

34

Unbounded Loop

The previous computation of the fixpoint terminates in a finite number of steps, but that is not the
case in general.

Suppose we bound the loop by n:

Xp=T
b oy 1: 2 Xi,,g = T[X t [1’ 1]]
while “x < n do XL =Tlx—[1,n+1]]

X=X x = [1,n—1]]
XE =27 x—[3,n+1]]
Xp =20 x> [n+1,n+1]]

b xex427%
done’e

35

Unbounded Loop

The previous computation of the fixpoint terminates in a finite number of steps, but that is not the
case in general.

Suppose we bound the loop by n:

Xp=T
b oy 1: 2 Xi,,g = T[X t [1’ 1]]
while “x < n do XL =Tlx—[1,n+1]]

X = Xg—l[x — [1,n—1]]
xr = XZT*I[X — [3,n+1]]
Xl = Xg—l[x — [n+1,n+1]]

b xex427%
done’e

e What if nis a very large constant? Slow convergence

e Worst, what if n is a variable such that n+— [—o00, c0] in the environment? Convergence at
infinity only

e Question: What condition on A¥ would allow to always converge in finitely many steps? 35

Definition

Let (A* C) be an abstract domain.
A widening is a function V : Af x A* — A? such that for all x, y € Af:

x E xVy y E xVy

We say that V is terminating if for any increasing sequence x* = x? C ... and arbitrary
sequence yt, y?, ... such that Vk € N, x*T1 = xkVy* there exists i € N such that x' ™! = x'.

Interval widening

Let's define a widening over intervals (push unstable bounds to infinities):
e LVx £ xVL 2 x
e [a,b]V[c,d] £ [(a>c? —ocsa),(b<d? cosb]]

Interval Widening

X =T

X = Cili + 1]k
Xf"“ =xv xluxi
X(,ik“ = Ci[i < 10]x}*
X = i+ i+ 2] X
Xf}“ = CJ[i > 10)x}*

Focus on .)c’i

bije1;6

while %/ < n do
i jt2t

done’

XP2=1v1 =1
XB = XPVT[x—[1,1]] = 1VT[x~ [1,1]] = T[x — [1,1]]
XPZ XPUTx o [13)] = Tl [LUIVTx = [L,3] = T[x e 1, 00]

XP =XVTx = [1,00]] =Tlx [1,00]]VTIx = [1,00]] = T[x > [1,00]]

Widening helps to enforce convergence at the cost of a loss of
precision.

Soundness

Let (C, <) be the concrete domain and (A, C) the abstract domain.

e A transformer is an order-preserving function f : C — C (e.g., C[.] or eq(.)).

e An abstract transformer is an order-preserving function f : A — A (e.g., C*[.] or eq®(.)).

Soundness: Ifp= f < ’V('fp; ?)

(we say Ifp= f is a sound fixpoint overapproximation of Ifp= f.)

What are the conditions required on A and its abstract transformers to satisfy soundness?

Theorem (Sound transformer abstraction [Cou21] Th. 18.3)

If (C,<) &= (A,C) then (C <> C,<) % (A= A, C) with:

ol

aofory

—
|

N—r
(1> >

Yo ? o
To abstract a least fixpoint a/(Ifp= f), we abstract its transformer into an abstract transformer
aofoyeA— A

From concrete to abstract transformers

We could define C{[x < y] 2 aoC[x < y]or.

39

Theorem (Least fixpoint overapproximation in a complete lattice [Cou21] Th. 18.10)

Let (C,<) and (A,C) be complete lattices, (C,<) ——= (A,C) andf € C = C
order-preserving.
Then Ifp= f < ~(Ifp= ao f o).

Ifp=
= A{xe C|f(x)<x} (by Tarski's fixpoint theorem)
< AR (1 (x) <A(x)}
= Y([KxeA|f(v(x)) <~v(Xx)}) (v preserves a{rbritrary meet)
= Y([Hxe€A[(acfory)(X) EX}) (by (C,<) == (AE))
= (fp= aofory) (by Tarski’s fixpoint theorem)

40

« o f o~y is convenient from a mathematical perspective but not usable in practice as «, v and
f might not be computable.
Hence, we approximate this definition.

Theorem ([Cou21] Th. 18.7)

Let (C,<) be a complete lattice and f,g € C — C order-preserving.
Iff < g then Ifp< f C IfpS g.

Corollary

Let vo foy C F. Then IifpS f < ~(Ifp= 7).

]

By Th. 18.7 and Th. 18.10.

41

Other Concepts of Abstract Interpretation

Many techniques to improve precision

Various abstract domains with different precision/efficiency tradeoff (replacing intervals
in the previous example).

Various products of abstract domains to combine their strengths.

More efficient fixpoint algorithms (narrowing, chaotic iterations, ...).

42

Course organisation

Course plan (2/8)

Bricks of abstraction: numerical domains

relational domains

simple domains specific domains

Y
T
Ellipsoids
digital filters

Y

t
Congruences Polyhedra Exponentials
x€aZ+b Zi aixp < B rounding errors

Octagons
tx+y<c

Intervals
x € [a, b]

Course 0 Introduction Antoine Miné

Conclusion

Universality of Lattice Theory and Abstract Interpretation

Abstraction and approximation are two central concepts in computer science. Abstract
interpretation captures those precisely, thus has many applications beyond program analysis:

e Constraint reasoning.

e Neural network verification.

(Gradual) typing.

Conflict-free replicated data types (CRDTS).

Parallel computing.

43

Resources

e MPRI class of Antoine Miné:
https://www-apr.lip6.fr/~mine/enseignement/mpri/2023-2024/ (two slides

stolen from this class).
e Two recent books:

PRINCIPLES OF
ABSTRACT INTERPRETATION

INTRODUCTION
TO STATIC ANALYSIS
AN ABSTRACT INTERPRETATION PERSPEGTIVE

XAVIER RIVAL AND KWANGKEUN Y1

PATRICK COUSOT

a4

https://www-apr.lip6.fr/~mine/enseignement/mpri/2023-2024/

[Cou21]

References

Patrick Cousot. Principles of abstract interpretation. MIT Press, 2021.

45

	References

