Lattice Theory for Parallel Programming — page 1/4

UNIVERSITE DU
LUXEMBOURG

Project 1: Design of Parallel Algorithms with Lattice Data Type

Lattice Theory for Parallel Programming

% Understanding a new model of computation based on lattice theory.
% Implementing two algorithms in this model on GPU.

% The code on your Github repository generated by clicking here: https://classroom.github.com/a/1ThI8wMB.
Note: one team member first create the team, and then you join the team.

% Deadline: 16th of November 2024 (23h59).
% Don’t share your code.

% This is a solo project or in a team of 3 students maximum.

1 Warm-up

Exercise 1 — Parallel Minimum
In C++, implement an algorithm to find the minimum in an array:

* Implement a sequential algorithm first.

* In CUDA/C++, implement a version using a global minimum variable (decreasing integer lattice) and the fixpoint
model of computation.

* In CUDA/C++, implement a state-of-the-art reduction parallel algorithm on GPU (see Chapter 10. Reduction And
minimizing divergence of the book Programming Massively Parallel Processors A Hands-on Approach.

* Use a massive number of threads (eg. 1024 blocks of 1024 threads) to compare the efficiency of both approaches.
* Benchmark on the HPC of the University using hopper nodes on IRIS.

* In the README.md, include benchmarking plot and an analysis of your results.

University of Luxembourg, Master in HPC/LTPP

https://classroom.github.com/a/lIhI8wMB

Lattice Theory for Parallel Programming — page 2/4

2 Parallel Simplification of Logical Formula

2.1 Constraint Network

In the following, we consider constraint programming over integer variables only. Let X be a finite set of variables
and C be a finite set of constraints. Without loss of generality, we represent the domain of variables using intervals. Let
I={[l,u] | €Z,ueZ,l<u}U{L}bethesetof intervals ordered by inclusion with a special element L representing
the empty interval. We define b([¢,u]) £ ¢ and ub([¢,u]) = u to extract the lower and upper bounds. The intersection
of intervals is defined as [¢, u] N [¢, v'] & [max{¢, ¢'}, min{u,u'}], and inclusion as [¢(,u] C [¢(',u'] < £ >0 Au < .
A constraint network is a pair P = (d, C) such that d € X — I is the domain function. We denote D the set of all
domain functions X — I ordered pointwise (d < d’ < Vz € X, d(z) C d'(x)). An assignment is amap asn : X — Z,
and we denote the set of all assignments by Asn. The set of solutions of a constraint is given by rel(c) C Asn. For
instance, rel(z +y < 5) = {asn € Asn | asn(x) + asn(y) < 5}. The set of solutions of a constraint network is:

sol(d,C) = {asn € Asn |
Ve e C, asn € rel(c) AVz € X, asn(z) € d(x)}
2.2 Ternary Constraint Network

A ternary constraint network (TCN) is a constraint network with only constraints of arity 3 such as * = y + 2z and
b= (x <y)with {z,y,2,b} C X.

Definition 1. A ternary constraint network (d, C') is a constraint network such that each ¢ € C'is of the formz = y © z
where x,y, z € X are variables and ® € {+, *, min, maz, =, <} an arithmetic operator.

We write TCN the set of all ternary constraint networks. Unary constraints of the form x = k, x < kand z > k
where x € X and k € Z are directly represented as domains of the variables. The lack of subtraction is justified by the
relational semantics of constraints as we can rewrite © = y — z into y = x + 2z without loss of precision. The semantics
of the constraints is given as follows:

e rel(z =y +2) 2 {asn € Asn | asn(z) = asn(y) + asn(z)}
e rel(x =y *2) 2 {asn € Asn | asn(z) = asn(y) * asn(z)}
e rel(z = min(y, 2)) £ {asn € Asn | asn(z) = min(asn(y), asn(z))}
e rel(z = max(y, z)) 2 {asn € Asn | asn(z) = max(asn(y), asn(2))}

s rel(x =y =2) = {asn € Asn | asn(z) = (asn(y) = asn(z) 2 130)}

(
(
(
(
(
(

s rel(x =y < 2) 2 {asn € Asn | asn(z) = (asn(y) < asn(z) 2 130)}

2.3 Equivalent Classes of Variables

Suppose the following constraint network:

({x — [0,10],y — [0,10], 2 — [5,10], ONE — [1,1]},{z = 2 + y, ONE = z = x})

We have an equality constraint z = x, therefore the constraint network could be simplified to:
({x — [5,10],y — [0,10], ONE — [1,1]},{z = x + y})

We have removed the variable z, and substituted its occurrence in the constraint. Of course, to preserve equivalence
between the initial constraint network and the simplified one, we must keep track of equivalent variables. We define a
structure E' to achieve this jobﬂ

We aim at finding a partition £ of X such that each component Y of E represents a set of equivalent variables. More
precisely, for each component Y € E, all pairs of variables z,y € Y are connected by an equality constraint z = y.

Tt might be useful to review union-find algorithm.

University of Luxembourg, Master in HPC/LTPP

Lattice Theory for Parallel Programming — page 3/4

We write [x]p € E the equivalence class of z in E. Note that E is a set of sets, hence [z|g is the set of all variables
equivalent to x.

Example. Let us suppose X = {z,y}. Initially, we have not detected any equality, hence £ = {{z}, {y}}, thatis, =
and y are in different equivalent classes. In particular, we have [z]p = {z} and [y]g = {y}. If we detect x = y, then we
can merge their equivalent classes and we obtain £ = {{z,y}}. In that case, we have [z|p = {x,y} and [y]r = {z,y}.

The equivalence classes are discovered by various preprocessing techniques. Initially, we suppose the variables are
all distinct which is given by the partition init(X) 2 {{z} | € X}. We add a variable equality z = y by removing
both equivalence classes [x|g and [y]p from E and adding back their union into the partition.

merge(E, z,y) =
let XY = {[z]g} U{[ly]g} in
(E\XY)U{Usexy S}

The interval domain of a variable z € X in an equivalence class Y is the intersection of all variables’ domains in Y,

defined as dp(z) £ MNyela]n 4Y)-
We suppose variables are totally ordered (e.g. by an indexing) and we choose min Y to be the representative variable
of the equivalence class Y.

2.4 Exercise

Exercise 2 — Parallel Simplification of Logical Formula
Your task is to provide a function simplify : TCN — TCN x P(P(X)) such that, for all (d,C) € TCN and
simplify(d, C) = ((d', C"), E):

* E CP(P(X)) is a partition of the variables as described above.

* The simplified TCN is equivalent:

sol(d,C) = {asn € Asn | asn € sol(d',C"),Vx € X, asn(z) € dg(z)}

A requirement is to design your algorithm as a parallel fixpoint computation over a lattice of your choice. At least, you
should formalize and implement the detection of equality, that is, all constraint x = y = z such that d(z) = [1, 1].

There are many directions for improvements. For instance, notice that new equalities can be discovered using stan-
dard algebraic equivalence, e.g., z = y + z with d(z) = [0, 0] is the same as z = y.

University of Luxembourg, Master in HPC/LTPP

Lattice Theory for Parallel Programming — page 4/4

Deliverables.

* If you do not present this project in-class, produce a short video (maximum 10 minutes), and give the link of the
upload in the README of the project. Present the main ideas and the formalization.

* The formalization of your function simplify with proofs of correctness, in PDF file formatted using Latex.

* The parallel implementation of the algorithm on GPU, with benchmarking analysis and any other information you
find relevant.

* You should benchmark your code on the following TCN instanceﬂ
https://uniluxembourg-my.sharepoint.com/:u:/g/personal/pierre_talbot_uni_lu/EfgfQOxdGO_BE jpm96LM1ihoBK6Yd60m_
14VPaEUgJjTiPNg?e=00zpR6
Of course, you can design smaller instances to test the correctness of your algorithm.

* Your program should be usable as follows:

./simplify -o output.tcn network.tcn

You can add different options to enable/disable some optimizations, or propose different variants of the algorithm.

TCN Input Format. The constraint network ({z¢ — [1, 3], 21 — [1,1], 22 — [0, 3], 25 — [0, 2]}, {x0 = 21 + 22,21 =
x9 < x3,x1 = x9 = x3} is represented by the following input format:

4

13

11

03

0 2

3

01+ 2
12013
10=23

The first line indicates the number of variables N. The N next lines are the domains of the variables (here we have
d(xo) = [0, 1]). The next line is the number of constraints M. The M next lines are the constraints, for instance 0 1 +
2 represents the constraint g = x1 + 2. The operators are represented by a single character in the set {+, %, A, I, L, =}
where A is for max, I is for min and L is for <.

TCN Output Format. In the previous example, we can at least remove the equality constraint 1 = xg = x3 and the
variable 3.

T O WO O Wb
i S =N
o = +

I w N

3

In this example, we have the equivalence class {z, x3} and we choose the representative variable to be x. Instead of
writting the domain of z3, we write the index of its representative variable (here zg). Note that the domain of x(is now
[1, 2]. Put the symbol R in front of the constraints that can be removed. Note that to simplify the assessment, you cannot
add new constraints.

They are generated from the MiniZinc challenge 2024 (https://www.minizinc.org/challenge/2024/results/).

University of Luxembourg, Master in HPC/LTPP

https://uniluxembourg-my.sharepoint.com/:u:/g/personal/pierre_talbot_uni_lu/EfgfQxdG0_BEjpm96LM1ihoBK6Yd6Om_i4VPaEUgjTiPNg?e=0ozpR6
https://uniluxembourg-my.sharepoint.com/:u:/g/personal/pierre_talbot_uni_lu/EfgfQxdG0_BEjpm96LM1ihoBK6Yd6Om_i4VPaEUgjTiPNg?e=0ozpR6
https://www.minizinc.org/challenge/2024/results/

	Warm-up
	Parallel Simplification of Logical Formula
	Constraint Network
	Ternary Constraint Network
	Equivalent Classes of Variables
	Exercise

