

Project 1: Design of Parallel Algorithms with Lattice Data Type

Lattice Theory for Parallel Programming

Goals

- ★ Understanding a new model of computation based on lattice theory.
- ★ Implementing two algorithms in this model on GPU.
- ★ The code on your Github repository generated by clicking here: <https://classroom.github.com/a/1IhI8wMB>.
Note: one team member first create the team, and then you join the team.
- ★ **Deadline:** 16th of November 2024 (23h59).
- ★ Don't share your code.
- ★ This is a solo project or in a team of 3 students maximum.

1 Warm-up

Exercise 1 – Parallel Minimum

In C++, implement an algorithm to find the minimum in an array:

- Implement a sequential algorithm first.
- In CUDA/C++, implement a version using a global minimum variable (decreasing integer lattice) and the fixpoint model of computation.
- In CUDA/C++, implement a state-of-the-art reduction parallel algorithm on GPU (see *Chapter 10. Reduction And minimizing divergence* of the book *Programming Massively Parallel Processors A Hands-on Approach*).
- Use a massive number of threads (eg. 1024 blocks of 1024 threads) to compare the efficiency of both approaches.
- Benchmark on the HPC of the University using hopper nodes on IRIS.
- In the README.md, include benchmarking plot and an analysis of your results.

2 Parallel Simplification of Logical Formula

2.1 Constraint Network

In the following, we consider constraint programming over integer variables only. Let X be a finite set of variables and C be a finite set of constraints. Without loss of generality, we represent the domain of variables using intervals. Let $I = \{[\ell, u] \mid \ell \in \mathbb{Z}, u \in \mathbb{Z}, \ell \leq u\} \cup \{\perp\}$ be the set of intervals ordered by inclusion with a special element \perp representing the empty interval. We define $lb([\ell, u]) \triangleq \ell$ and $ub([\ell, u]) \triangleq u$ to extract the lower and upper bounds. The intersection of intervals is defined as $[\ell, u] \cap [\ell', u'] \triangleq [\max\{\ell, \ell'\}, \min\{u, u'\}]$, and inclusion as $[\ell, u] \subseteq [\ell', u'] \Leftrightarrow \ell \geq \ell' \wedge u \leq u'$.

A *constraint network* is a pair $P = \langle d, C \rangle$ such that $d \in X \rightarrow I$ is the *domain function*. We denote \mathbf{D} the set of all domain functions $X \rightarrow I$ ordered pointwise ($d \leq d' \Leftrightarrow \forall x \in X, d(x) \subseteq d'(x)$). An *assignment* is a map $asn : X \rightarrow \mathbb{Z}$, and we denote the set of all assignments by \mathbf{Asn} . The set of solutions of a constraint is given by $rel(c) \subseteq \mathbf{Asn}$. For instance, $rel(x + y \leq 5) \triangleq \{asn \in \mathbf{Asn} \mid asn(x) + asn(y) \leq 5\}$. The set of solutions of a constraint network is:

$$\begin{aligned} sol(d, C) \triangleq \{asn \in \mathbf{Asn} \mid \\ \forall c \in C, \text{ } asn \in rel(c) \wedge \forall x \in X, \text{ } asn(x) \in d(x)\} \end{aligned}$$

2.2 Ternary Constraint Network

A *ternary constraint network* (TCN) is a constraint network with only constraints of arity 3 such as $x = y + z$ and $b = (x \leq y)$ with $\{x, y, z, b\} \subseteq X$.

Definition 1. A ternary constraint network $\langle d, C \rangle$ is a constraint network such that each $c \in C$ is of the form $x = y \odot z$ where $x, y, z \in X$ are variables and $\odot \in \{+, *, \min, \max, =, \leq\}$ an arithmetic operator.

We write \mathbf{TCN} the set of all ternary constraint networks. Unary constraints of the form $x = k$, $x \leq k$ and $x \geq k$ where $x \in X$ and $k \in \mathbb{Z}$ are directly represented as domains of the variables. The lack of subtraction is justified by the relational semantics of constraints as we can rewrite $x = y - z$ into $y = x + z$ without loss of precision. The semantics of the constraints is given as follows:

- $rel(x = y + z) \triangleq \{asn \in \mathbf{Asn} \mid asn(x) = asn(y) + asn(z)\}$
- $rel(x = y * z) \triangleq \{asn \in \mathbf{Asn} \mid asn(x) = asn(y) * asn(z)\}$
- $rel(x = \min(y, z)) \triangleq \{asn \in \mathbf{Asn} \mid asn(x) = \min(asn(y), asn(z))\}$
- $rel(x = \max(y, z)) \triangleq \{asn \in \mathbf{Asn} \mid asn(x) = \max(asn(y), asn(z))\}$
- $rel(x = y = z) \triangleq \{asn \in \mathbf{Asn} \mid asn(x) = (\|asn(y) = asn(z) ? 1 : 0\|)\}$
- $rel(x = y \leq z) \triangleq \{asn \in \mathbf{Asn} \mid asn(x) = (\|asn(y) \leq asn(z) ? 1 : 0\|)\}$

2.3 Equivalent Classes of Variables

Suppose the following constraint network:

$$\langle \{x \mapsto [0, 10], y \mapsto [0, 10], z \mapsto [5, 10], ONE \mapsto [1, 1]\}, \{z = x + y, ONE = z = x\} \rangle$$

We have an equality constraint $z = x$, therefore the constraint network could be simplified to:

$$\langle \{x \mapsto [5, 10], y \mapsto [0, 10], ONE \mapsto [1, 1]\}, \{x = x + y\} \rangle$$

We have removed the variable z , and substituted its occurrence in the constraint. Of course, to preserve equivalence between the initial constraint network and the simplified one, we must keep track of equivalent variables. We define a structure E to achieve this job¹.

We aim at finding a partition E of X such that each component Y of E represents a set of equivalent variables. More precisely, for each component $Y \in E$, all pairs of variables $x, y \in Y$ are connected by an equality constraint $x = y$.

¹It might be useful to review *union-find algorithm*.

We write $[x]_E \in E$ the equivalence class of x in E . Note that E is a *set of sets*, hence $[x]_E$ is the set of all variables equivalent to x .

Example. Let us suppose $X = \{x, y\}$. Initially, we have not detected any equality, hence $E = \{\{x\}, \{y\}\}$, that is, x and y are in different equivalent classes. In particular, we have $[x]_E = \{x\}$ and $[y]_E = \{y\}$. If we detect $x = y$, then we can merge their equivalent classes and we obtain $E = \{\{x, y\}\}$. In that case, we have $[x]_E = \{x, y\}$ and $[y]_E = \{x, y\}$.

The equivalence classes are discovered by various preprocessing techniques. Initially, we suppose the variables are all distinct which is given by the partition $\text{init}(X) \triangleq \{\{x\} \mid x \in X\}$. We add a variable equality $x = y$ by removing both equivalence classes $[x]_E$ and $[y]_E$ from E and adding back their union into the partition.

$$\begin{aligned} \text{merge}(E, x, y) &\triangleq \\ &\text{let } XY = \{[x]_E\} \cup \{[y]_E\} \text{ in} \\ &(E \setminus XY) \cup \{\bigcup_{S \in XY} S\} \end{aligned}$$

The interval domain of a variable $x \in X$ in an equivalence class Y is the intersection of all variables' domains in Y , defined as $d_E(x) \triangleq \bigcap_{y \in [x]_E} d(y)$.

We suppose variables are totally ordered (e.g. by an indexing) and we choose $\min Y$ to be the representative variable of the equivalence class Y .

2.4 Exercise

Exercise 2 – Parallel Simplification of Logical Formula

Your task is to provide a function $\text{simplify} : \text{TCN} \rightarrow \text{TCN} \times \mathcal{P}(\mathcal{P}(X))$ such that, for all $\langle d, C \rangle \in \text{TCN}$ and $\text{simplify}(d, C) = (\langle d', C' \rangle, E)$:

- $E \subseteq \mathcal{P}(\mathcal{P}(X))$ is a partition of the variables as described above.
- The simplified TCN is equivalent:

$$\text{sol}(d, C) = \{ \text{asn} \in \text{Asn} \mid \text{asn} \in \text{sol}(d', C'), \forall x \in X, \text{asn}(x) \in d'_E(x) \}$$

A requirement is to design your algorithm as a *parallel fixpoint computation* over a lattice of your choice. At least, you should formalize and implement the detection of equality, that is, all constraint $x = y = z$ such that $d(x) = [1, 1]$.

There are many directions for improvements. For instance, notice that new equalities can be discovered using standard algebraic equivalence, e.g., $x = y + z$ with $d(z) = [0, 0]$ is the same as $x = y$.

Deliverables.

- If you do not present this project in-class, produce a short video (maximum 10 minutes), and give the link of the upload in the README of the project. Present the main ideas and the formalization.
- The formalization of your function *simplify* with proofs of correctness, in PDF file formatted using Latex.
- The parallel implementation of the algorithm on GPU, with benchmarking analysis and any other information you find relevant.
- You should benchmark your code on the following TCN instances²:

https://uniluxembourg-my.sharepoint.com/:u/g/personal/pierre_talbot_uni_lu/EfgfQxdG0_BEjpm96LM1ih0BK6Yd6Om_i4VPaEUgjTiPNG?e=0ozpR6

Of course, you can design smaller instances to test the correctness of your algorithm.

- Your program should be usable as follows:

```
./simplify -o output.tcn network.tcn
```

You can add different options to enable/disable some optimizations, or propose different variants of the algorithm.

TCN Input Format. The constraint network $\langle \{x_0 \mapsto [1, 3], x_1 \mapsto [1, 1], x_2 \mapsto [0, 3], x_3 \mapsto [0, 2]\}, \{x_0 = x_1 + x_2, x_1 = x_2 \leq x_3, x_1 = x_0 = x_3\} \rangle$ is represented by the following input format:

```
4
1 3
1 1
0 3
0 2
3
0 1 + 2
1 2 L 3
1 0 = 3
```

The first line indicates the number of variables N . The N next lines are the domains of the variables (here we have $d(x_0) = [0, 1]$). The next line is the number of constraints M . The M next lines are the constraints, for instance $0 \ 1 + 2$ represents the constraint $x_0 = x_1 + x_2$. The operators are represented by a single character in the set $\{+, *, A, I, L, =\}$ where A is for max, I is for min and L is for \leq .

TCN Output Format. In the previous example, we can at least remove the equality constraint $x_1 = x_0 = x_3$ and the variable x_3 .

```
4
1 2
1 1
0 3
0
3
0 1 + 2
1 2 L 3
R 1 0 = 3
```

In this example, we have the equivalence class $\{x_0, x_3\}$ and we choose the representative variable to be x_0 . Instead of writting the domain of x_3 , we write the index of its representative variable (here x_0). Note that the domain of x_0 is now $[1, 2]$. Put the symbol R in front of the constraints that can be removed. Note that to simplify the assessment, you cannot add new constraints.

²They are generated from the MiniZinc challenge 2024 (<https://www.minizinc.org/challenge/2024/results/>).