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UNIVERSITE DU
LUXEMBOURG

Project 2: Neural Network Verification with Abstract Interpretation

Lattice Theory for Parallel Programming

% Understatnding neural network verification with abstract interpretation.

% Implementing bound propagation with different abstract domains on CPU/GPU.

% The code on your Github repository generated by clicking here: https://classroom.github.com/a/ka88s1Tq.
Note: one team member first create the team, and then you join the team.

% Deadline: 14th of December 2025 (23h59).
% Don’t share your source code

% This is a solo project or in a team of 3 students maximum.

Nowadays, neural networks are widely used in various applications, such as autonomous systems, healthcare, and
many others. However, neural networks are still unable to make perfect decisions. For example, they remain highly
vulnerable to adversarial examples. Adversarial examples refer to inputs that are initially classified correctly but lead
to incorrect predictions when perturbed by slight, human-imperceptible noise. For instance, in an autonomous driving
system, a neural network may correctly recognize a clean stop sign but fail to classify it accurately if a specific sticker
pattern is added or if the brightness differs from the training dataset. Such misclassifications can result in critical errors,
potentially causing accidents that endanger both the driver and other road users. Therefore, verifying if a neural network
consistently produces robust outputs within a given input space is a crucial and necessary step before deploying it in
safety-critical applications.

In recent years, several methods have been proposed for neural network verification. Most of these approaches are
based on abstract interpretation, they are overapproximating the output bounds of each neuron in the network to make the
verification process both efficient and practically feasible. In addition, there is a neural network verification competition
in every year since 2020. This competition uses two standard input files with vnnlib and onnx formats. vonlib is
used to define the preconditions and postconditions and onnx provides network architecture and its trained parameters
(weights/biases).

Exercise 1 — Warm-up
To have better understanding about verifying neural networks, we first build the state-of-the-art verifier, « — 3—CROWN,
to know how it works.

* Install « — S—CRON from https://github.com/Verified-Intelligence/alpha-beta-CROWN.

» Test @« — —CRON with their provided examples.
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Exercise 2 — Bound Propagation
As we have mentioned in the lecture, there are different abstract domains can be used during bound propagation to verify
neural networks. Your tasks are:

1.

Implement 3 bound propagation algorithms with interval abstract domain, symbolic interval abstract domain, and
deeppoly abstract domain, respectively, for verifying feed-forward ReL.U neural networks. (You can use any C++
library for numerical operations such as OpenBLAS.)

Check the results from your implementation and o — 5—CROWN (we have provided a configuration file for CROWN,
see config.yaml).

. As we know, deeppoly abstract domain is more precise than others in terms of overapproximated area in relu

function, does it mean that deeppoly abstract domain is always dominating other abstract domains? If not, please
show an example from datasets to explain.

By using abstract interpretation to verify neural networks, we are still suffering from the imprecision of the abstract
domains (false negative). How can you make those abstract domains be more precise? (Show the results to
demonstrate the improvements.)

. In CUDA/C++, implement parallel bound propagation with 3 abstract domains on GPU.

If we have shown that a neural network is not robust, what can we do to improve its robustness?

. (Extra) Define and formalize a new abstract domain for verifying feedforward relu neural networks or other net-

work architectures. Prove that all abstract transformations are sound.
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Deliverable.
In the repository, we have provided 2 input parsers for loading vnnlib and onnx files.

If you do not present this project in-class, please produce a short video (maximum 10 minutes), and give the linke
of the upload in the README of the project. Present the main ideas and the formalization.

Prove the soundness of 3 abstract domains for verifying neural networks in PDF file formatted using ETEX.

The parallel implementation of the algorithm on GPU, with benchmarking analysis and any other information you
find relevant.

Your program should be usable as follows:
./nnv [your_instance.csv] -o output.csv

You can add different options to enable/disable some optimizations, or propose different variants of the algorithm.

Input Parser.

Vnnlib Input format.

In vnnlib file, there are 3 components: declare variables, define preconditions, and define postconditions.

Let the input layer has 2 neurons X_0, X_1 and the output layer contains 2 neurons Y_0, Y_1. The preconditions
define the bounds of input neurons from 1 to 2. The postconditions are either Y_0 is greater than Y_1 or Y_1 is
greater than Y_O. In this instance, the vnn1ib file will be defined as follows:

declare—-const X_0 Real)

declare—-const X_1 Real)

declare—-const Y_.0 Real)

declare-const Y_.1 Real)

(
(
(
(

(assert (<= X_.0 2))
(assert (>= X_.0 1))
(assert (<= X_.1 2))
(assert (>= X_.1 1))

(assert (or
(and (<= Y.0 Y.1))
)

(and (<= Y_.1 Y.0))))

Onnx Input format.
In the final project, we only consider feedforward relu neural networks. To describe such networks, we need to use
those operators in onnx file in the following:

Sub and Div: They provide constant values for normalization on input vector.

MatMul: It provides a weight matrix W : RY x R for affine function.

Add: It provides a biase vector b: R*! for affine function, this operator is usually used right after MatMul.

Gemm: It provides a weight matrix W : R x R’ and a biase vector b: R for affine function.

Conv: It will give us all parameters used in convolutional operation, this also can be viewed as Gemm.

Relu: It specifies the nonlinear activation function as relu.

We have provided all necessary functions and cmake file for building both input parsers. Feel free to use it di-
rectly to implement your bound propagation. Note that for the vnnlib parser, we did the negation on postconditions,
which means that the verification result is determined by checking if all lower bounds of output neurons are greater
than 0. If so, return UNSAT. Otherwise return SAT and its adversarial example.

The Format of Output CSV File.
vnnlib file name, onnx file name, abstract domain, UNSAT or SAT, at least 1 adversarial example if any.
Please collect all results into a single csv file.
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Neural Network Visualization Tool: https://netron.app/
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