
Parallel Computing – page 1/2

Functional Programming in C++
Parallel Computing

Goals

✯ Learn C++ lambda.

✯ Learn two fundamental functional operations: map and reduce.

✯ Relevant videos:

• Lambda function

• Type inference

• Metaprogramming

Information

1. Starting code: https://github.com/ptal/functional

Exercise 1 – Map operation
Implement a map function taking a vector-like type and applying a function f to each of its component. Suppose an
integer vector v with the values 1,-5,6, then map(v, [](int x) { return x * 2; }) modifies v in-place
and double each value. Use templates for the type of the vector and function.

Exercise 2 – Fold operation
Implement a left-fold function (aka. ”reduce”) which takes a vector, an accumulator and a function f. For instance,
fold_left(v, 0, [](int accu, int x) { return accu - x; }) returns the value -2 (the differ-
ence of the integers in vector v from left to right). More information. Use templates for the types of the vector and
function.

Exercise 3 – Fold right
Same as (2) but with fold_right, so it is from right to left. On the previous example, it also returns -2. Use templates
for the type of the vector and function.

Exercise 4 – Rule 110 again
Implement the simulation loop of Rule 110 using map—think of the best way to get the index of the array instead of its
elements. In addition, compute the size of the longest sequence of consecutive 1 occurring at any iteration, and print it.
Implement this new feature using a fold operation.

University of Luxembourg, Master in High Performance Computing/PC

https://youtu.be/g8vo1H7ctCY
https://youtu.be/GHzFN1nX_O4
https://youtu.be/c5a6HXi2vv8
https://github.com/ptal/functional
https://en.wikipedia.org/wiki/Fold_(higher-order_function)


Parallel Computing – page 2/2

Exercise 5 – Metaprogramming
Let us (partially) reimplement the type std::tuple. You only need to implement a constructor, destructor and the get<i>(mytuple)
free function. To implement get, you can use a helper member function:

template <class T, class... Ts>
struct Tuple {

// ...
template <int i>
auto& get() {

...
}

}

int main() {
Tuple<double, int, int> t;
// ...
std::cout << get<0>(t) << std::endl;
std::cout << get<1>(t) << std::endl;
std::cout << get<2>(t) << std::endl;

}

(You have to define the helper structure tuple_element). Note that to call a template method, there is a special
syntax. Unfortunately tuple.get<0>() will not work, you have to use tuple.template get<0>(), this is
because the former syntax generates a parsing ambiguity.

University of Luxembourg, Master in High Performance Computing/PC

https://en.cppreference.com/w/cpp/utility/tuple.html

