
Parallel Computing – page 1/2

Rule 110: Three Ways to Parallelize
Parallel Computing

Goals

✯ Learn to parallelize a code using C++ execution policy, OpenMP and std::thread.

✯ Relevant videos: if you want to get started as quick as possible, follow the videos annotated with “fast track”. Of
course, all videos should be watched eventually.

• C++ execution policies:

– HPC Top-down
– Benchmarking
– Easy Acceleration (fast track)
– Arithmetic Intensity

• C++ std::thread:

– Multithreading in Theory (fast track)
– Multithreading in Practice (fast track)
– Static Decomposition (fast track)
– Load imbalance
– Fork-Join Model
– Privatization
– Synchronization with Barrier

• OpenMP (fast track)

Deliverables

1. Starting code: https://github.com/ptal/rule110

Rules

1. You can discuss your design and your results on Discord or orally, but please don’t share your code.

2. This is a solo project.

University of Luxembourg, Master in High Performance Computing/PC

https://youtu.be/KhAYTCG8FJA
https://youtu.be/vx_vCMLPeAE
https://youtu.be/CVOBTUzUvXY
https://youtu.be/2-0iWx47ZZk
https://youtu.be/YcA7ipUazqg
https://youtu.be/vweK3VLOzd0
https://youtu.be/kCZDC9gCjQY
https://youtu.be/Z9oKViMhYpI
https://youtu.be/hbE6kxSQcQk
https://youtu.be/0xvOJM6ympw
https://youtu.be/7JkzFX5h9Dk
https://youtu.be/AT2WmFyaS1w
https://github.com/ptal/rule110

Parallel Computing – page 2/2

Exercise 1 – Three shades of parallelism
Parallelize the Rule 110 algorithm you wrote previously without pattern detection (the parameter --pattern will not
be provided). Propose three versions:

• Using C++ execution policies and standard algorithms (check out std::transform and std::views::iota).

• Using C++ threads and explicit division of the data.

• Using OpenMP.

Add a flag --version [policy|openmp|stdthread], e.g. we can call your code with ./rule110 --version
openmp. The primary criterion is correctness, and an incorrect implementation gives 0 point. The next laboratory tar-
gets efficiency, so a parallel algorithm that is correct is sufficient to pass this lab. Output: the number of 1s in the array
of the last iteration.

Exercise 2 – Benchmarking
Benchmark your code with the different versions, and various size of arrays and iterations. Plot your results and discuss
the plots and results in the README.md.

University of Luxembourg, Master in High Performance Computing/PC

