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Rule 110: Three Ways to Parallelize
Parallel Computing

Goals

✯ Learn to parallelize a code using C++ execution policy, OpenMP and std::thread.

✯ Relevant videos: if you want to get started as quick as possible, follow the videos annotated with “fast track”. Of
course, all videos should be watched eventually.

• C++ execution policies:

– HPC Top-down
– Benchmarking
– Easy Acceleration (fast track)
– Arithmetic Intensity

• C++ std::thread:

– Multithreading in Theory (fast track)
– Multithreading in Practice (fast track)
– Static Decomposition (fast track)
– Load imbalance
– Fork-Join Model
– Privatization
– Synchronization with Barrier

• OpenMP (fast track)

Deliverables

1. Starting code: https://github.com/ptal/rule110

Rules

1. You can discuss your design and your results on Discord or orally, but please don’t share your code.

2. This is a solo project.
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https://youtu.be/KhAYTCG8FJA
https://youtu.be/vx_vCMLPeAE
https://youtu.be/CVOBTUzUvXY
https://youtu.be/2-0iWx47ZZk
https://youtu.be/YcA7ipUazqg
https://youtu.be/vweK3VLOzd0
https://youtu.be/kCZDC9gCjQY
https://youtu.be/Z9oKViMhYpI
https://youtu.be/hbE6kxSQcQk
https://youtu.be/0xvOJM6ympw
https://youtu.be/7JkzFX5h9Dk
https://youtu.be/AT2WmFyaS1w
https://github.com/ptal/rule110
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Exercise 1 – Three shades of parallelism
Parallelize the Rule 110 algorithm you wrote previously without pattern detection (the parameter --pattern will not
be provided). Propose three versions:

• Using C++ execution policies and standard algorithms (check out std::transform and std::views::iota).

• Using C++ threads and explicit division of the data.

• Using OpenMP.

Add a flag --version [policy|openmp|stdthread], e.g. we can call your code with ./rule110 --version
openmp. The primary criterion is correctness, and an incorrect implementation gives 0 point. The next laboratory tar-
gets efficiency, so a parallel algorithm that is correct is sufficient to pass this lab. Output: the number of 1s in the array
of the last iteration.

Exercise 2 – Benchmarking
Benchmark your code with the different versions, and various size of arrays and iterations. Plot your results and discuss
the plots and results in the README.md.
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