

Lecture 1: Constraint Network

Intelligent Systems—Problem Solving
Pierre Talbot

Goals

- ★ Understanding a formal definition of constraint network.
- ★ Manipulate the mathematical concept of constraint network.
- ★ Modelling a simple constraint problem.

1 Constraint Network

In the following, we consider constraint programming over integer variables only. Let X be a finite set of variables. We denote \mathbf{C} the set of all constraints generated by the rule $\langle c_1, c_2 \rangle$ of the following grammar:

$\langle \odot \rangle ::= + \mid - \mid \times \mid tdiv$

$\langle \diamond \rangle ::= = \mid \neq \mid < \mid > \mid \geq \mid \leq$

$\langle t, u \rangle ::=$
 $\mid x$
 $\mid c$
 $\mid t \odot u$
 $\mid (t)$

$\langle c_1, c_2 \rangle ::=$
 $\mid t \diamond u$
 $\mid \neg c_1$
 $\mid c_1 \wedge c_2$
 $\mid c_1 \vee c_2$
 $\mid c_1 \Rightarrow c_2$
 $\mid c_1 \Leftrightarrow c_2$
 $\mid (c_1)$

definition of terms
variable $x \in X$
constant $c \in \mathbb{Z}$
functions
grouping

formulas
constraints
negation
conjunction
disjunction
implication
equivalence
grouping

Note that $tdiv$ is the truncated division, for instance $5 \ tdiv \ 2 = 2$ and $-5 \ tdiv \ 2 = -2$.

Exercise 1 – Grammar of constraints

- Is $x \leq y \times z$ a constraint of the grammar above?
- Is $x + y = z \text{ tdiv } 2$ a constraint of the grammar above?
- Is $x + y$ a constraint of the grammar above?
- Is $2 + 2 = 4$ a constraint of the grammar above?
- Is $2 + 2 = 3$ a constraint of the grammar above?
- Is $x \geq 5 \wedge x \leq 10$ a constraint of the grammar above?
- Is $\neg(x \geq 5 \wedge x \leq 10)$ a constraint of the grammar above?

end of exercise.

For each constraint $c \in \mathbf{C}$, we denote by $scp(c) \subseteq X$ its *scope*, i.e. the set of free variables of c .

Exercise 2 – Scope of a constraint

What is the scope of:

- $scp(x \neq 5) =$
- $scp(x + y \leq z) =$
- $scp(1 \neq 5) =$

end of exercise.

An *assignment* is a map $asn : X \rightarrow \mathbb{Z}$, and we denote the set of all assignments by **Asn**. For each constraint $c \in \mathbf{C}$, we define a function $rel \in \mathbf{C} \rightarrow \mathcal{P}(\mathbf{Asn})$ defining the set of solutions of this constraint. For instance, $rel(x + y \leq 5) \triangleq \{asn \in \mathbf{Asn} \mid asn(x) + asn(y) \leq 5\}$.

Exercise 3 – Solutions of constraints

Give the definition of rel for the following constraints:

- $rel(x = 1) \triangleq$
- $rel(x = y) \triangleq$
- $rel(\neg(x \leq y)) \triangleq$
- $rel(x < 10 \vee x > 20) \triangleq$

end of exercise.

A *constraint network* is a pair $P = \langle d, C \rangle$ such that $d \in X \rightarrow \mathcal{P}(\mathbb{Z})$ is the *domain function* and $C \subseteq \mathbf{C}$ is a finite set of constraints. We denote **D** the set of all domain functions $X \rightarrow \mathcal{P}(\mathbb{Z})$ ordered pointwise ($d \leq d' \Leftrightarrow \forall x \in X, d(x) \subseteq d'(x)$). The set of solutions of a constraint network is:

$$sol(d, C) \triangleq \{asn \in \mathbf{Asn} \mid \forall c \in C, asn \in rel(c) \wedge \forall x \in X, asn(x) \in d(x)\}$$

Finding an assignment $s \in sol(d, C)$ is the *constraint satisfaction problem*.

Exercise 4 – Solutions of constraint networks

- Let $P = \langle \{x \mapsto \{0, 1, 2\}, y \mapsto \{2, 3, 4\}\}, \{x \neq y, x > 1\} \rangle$ be a constraint network.
Compute $sol(P) =$
- Let $P = \langle \{x \mapsto \{0, 1\}, y \mapsto \{0, 1\}, z \mapsto \{0, 1\}\}, \{x \neq y, y \neq z, z \neq x\} \rangle$ be a constraint network.
Compute $sol(P) =$

end of exercise.

Exercise 5 – Modelling Sudoku

Describe a constraint network $\langle d, C \rangle$ such that $sol(d, C)$ represents all the solutions of a partially completed grid of Sudoku. Give an integer linear programming (ILP) formulation of this problem and compare both models.

end of exercise.

Exercise 6 – Alternative definition of sol

Is the following definition of sol' , equivalent to sol ? Prove it, or disprove it.

$$sol'(d, C) \triangleq \bigcap_{c \in C} \text{rel}(c) \cap \{ \text{asn} \in \mathbf{Asn} \mid \forall x \in X, \text{asn}(x) \in d(x) \}$$

end of exercise.

Exercise 7 – Redundant constraints

Let $\langle d, C \rangle$ be a constraint network. A redundant constraint $c \in C$ is a constraint that is not necessary—removing it does not change the set of solutions of our problem. Formally define what is a redundant constraint.

end of exercise.