

Lecture 2: Generalized Arc Consistency

Intelligent Systems—Problem Solving
Pierre Talbot

Goals

- ★ Understanding the concept of consistency, in particular *generalized arc consistency*.
- ★ Study a generic inference algorithm.

1 Preliminaries

Let d and d' be two domain functions over a set of variables X . We define a partial order \leq on domain functions as $\forall d, d' \in \mathbf{D}, d \leq d' \Leftrightarrow \forall x \in X, d(x) \subseteq d'(x)$.

Exercise 1 – Partial order on \mathbf{D}

Let $X = \{x, y\}$ be a set of variables.

- $\{x \mapsto \{1, 2\}, y \mapsto \{1, 2\}\} \leq \{x \mapsto \{1, 2, 3\}, y \mapsto \{1, 2, 3\}\}$?
- $\{x \mapsto \{1, 2, 3\}, y \mapsto \{1, 2, 3\}\} \leq \{x \mapsto \{1, 2\}, y \mapsto \{1, 2\}\}$?
- $\{x \mapsto \{1, 2\}, y \mapsto \{1, 2\}\} \leq \{x \mapsto \{2, 3\}, y \mapsto \{1, 2\}\}$?
- $\{x \mapsto \{2, 3\}, y \mapsto \{1, 2\}\} \leq \{x \mapsto \{1, 2\}, y \mapsto \{1, 2\}\}$?
- For any $d \in \mathbf{D}, d \leq \{x \mapsto \{\}, y \mapsto \{\}\}$?
- For any $d, d' \in \mathbf{D}, d \leq d' \vee d' \leq d$?

end of exercise.

Exercise 2 – Lemma

Prove $\forall C \in \mathbf{C}, \forall d, d' \in \mathbf{D}, d \leq d' \Leftrightarrow \text{sol}(d, C) \subseteq \text{sol}(d', C)$.

Recall/hint:

- Cartesian product: $\{1, 2\} \times \{3, 4\} = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$.
- Pointwise set inclusion: Let A, B, A', B' be sets. We have $A \times B \subseteq A' \times B' \Leftrightarrow A \subseteq A' \wedge B \subseteq B'$.

Exercise 3

Let $X = \{x, y, z\}$ be a set of variables, $d = \{x \mapsto \{0, 1, 2\}, y \mapsto \{0, 1, 2\}, z \mapsto \{0, 1, 2\}\}$ be a domain function, and $\langle d, \{x > y + z\} \rangle$ be a constraint network.

- Find a domain function d' such that $\text{sol}(d', \{x > y + z\}) = \text{sol}(d, \{x > y + z\})$ and $d' \leq d$.
- Check whether it is the smallest domain function you can find, i.e.,
 $\forall d'' \in \mathbf{D}, \text{sol}(d'', \{x > y + z\}) = \text{sol}(d, \{x > y + z\}) \Rightarrow d' \leq d''$.

end of exercise.

2 Generalized Arc Consistency

A *consistency* is a property ϕ on a constraint network $\langle d, C \rangle$. We say $\langle d, C \rangle$ is ϕ -consistent whenever $\phi(\langle d, C \rangle)$ holds. Enforcing a consistency on a constraint network can remove values from the domains of the variables and make the constraint network more explicit. It accelerates the search for a solution, as we will avoid to enumerate some locally inconsistent assignments.

An assignment in $\text{sol}(d, \{c\})$ is called a *support* of the constraint c . A *v-value* is a pair $(x, v) \in X \times \mathbb{Z}$. There exists a support for a v-value (x, v) on c iff $\exists \text{asn} \in \text{sol}(d, \{c\}), \text{asn}(x) = v$.

Exercise 4 – Support

Let $\langle \{x \mapsto \{0, 1\}, y \mapsto \{1, 2\}, z \mapsto \{0, 1\}, \{x = y, x \neq z, y \neq z\} \rangle$ be a constraint network.

- List the supports of $x = y$:

- List the supports of $x \neq z$:

- List the supports of $y \neq z$:

end of exercise.

Generalized arc consistency (GAC) consists in removing all v-values $(x, v), v \in d(x)$ that have no support in the constraints in which x occurs. Formally, a constraint $c \in C$ is GAC-consistent iff

$$\forall x \in \text{scp}(c), \forall v \in d(x), \exists \text{asn} \in \text{sol}(d, \{c\}), \text{asn}(x) = v$$

A constraint network $\langle d, C \rangle$ is GAC-consistent iff every constraint $c \in C$ is GAC-consistent.

Exercise 5 – GAC-consistent

Verify whether the constraint network defined in the previous exercise is GAC-consistent. If not, list all v-values that make the constraint network not GAC-consistent.

end of exercise.

In the literature, you can sometimes read about *node consistency* which holds whenever all unary constraints are GAC-consistent, and *arc consistency* which holds whenever all binary constraints are GAC-consistent. GAC-consistency is usually the one enforced on arithmetic constraints in modern constraint solvers. It is also the strongest consistency that can be defined when considering the constraints independently.

3 Constraint Propagation

In order to enforce GAC-consistency on a constraint network, we must first do it on a single constraint.

```

function revise(d, c)
  E = {}
  for x  $\in$  scp(c) do
    for v  $\in$  d(x) do
      if  $\forall a \in \text{sol}(d, \{c\}), a(x) \neq v$  then
        d(x) = d(x)  $\setminus \{v\}$ 
        E = E  $\cup \{x\}$ 
      end if
    end for
  end for
  return E
end function

```

The two loops iterate over all v-values of c.

Check if (x, v) has no support on c.

Remove v from the domain of x.

Notify the caller which variables were reduced.

Exercise 6 – Revise

Let $d = \{x \mapsto \{0, 1\}, y \mapsto \{1, 2\}, z \mapsto \{0, 1\}\}$ be a domain function and $\langle d, \{x = y, x \neq z, y \neq z\}\rangle$ be a constraint network. What is the domain after applying $\text{revise}(d, x = y)$?

end of exercise.

The simplest algorithm enforcing GAC-consistency consists in revising all the constraints until no domain is changing anymore.

```

function  $GAC_1(d, C)$ 
   $b = \text{true}$ 
  while  $b$  do
     $b = \text{false}$ 
    for  $c \in C$  do
      if  $\text{revise}(d, c) \neq \{\}$  then
         $b = \text{true}$ 
      end if
    end for
  end while
end function

```

It is however not very efficient since revising a constraint is only useful if the domain of one of its variables has changed. Since constraints are sharing variables, revising a constraint might modify a variable shared by another constraint which, in turn, should be revised. This mechanism of propagating the results of local inferences from constraints to constraints is called *constraint propagation*.

Exercise 7 – Constraint-oriented propagation scheme

Propose a function $\text{propagate}(d, C, E)$ where $\langle d, C \rangle$ is a constraint network and $E \subseteq X$ is the set of variables that changed since the last call to *propagate*. Initially, the algorithm is called with $\text{propagate}(d, C, X)$. The main idea is to maintain a queue of constraints to revise. Initially, the queue contains all the constraints with a variable in E . Let $E' = \text{revise}(d, c)$, then we must add in the queue all the constraints that have a variable in E' in their scopes. The function returns **false** if the constraint network is detected unsatisfiable, otherwise it returns **true**.

end of exercise.

Note that the algorithm *propagate* is independent of the underlying consistency achieved. Indeed, we can switch *revise* with a function enforcing a different consistency.