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Lecture 2: Generalized Arc Consistency
Intelligent Systems—Problem Solving

Pierre Talbot

Goals

✯ Understanding the concept of consistency, in particular generalized arc consistency.

✯ Study a generic inference algorithm.

1 Preliminaries

Let d and d′ be two domain functions over a set of variables X . We define a partial order ≤ on domain functions as
∀d, d′ ∈ D, d ≤ d′ ⇔ ∀x ∈ X, d(x) ⊆ d′(x).

Exercise 1 – Partial order on D
Let X = {x, y} be a set of variables.

• {x 7→ {1, 2}, y 7→ {1, 2}} ≤ {x 7→ {1, 2, 3}, y 7→ {1, 2, 3}} ?

• {x 7→ {1, 2, 3}, y 7→ {1, 2, 3}} ≤ {x 7→ {1, 2}, y 7→ {1, 2}} ?

• {x 7→ {1, 2}, y 7→ {1, 2}} ≤ {x 7→ {2, 3}, y 7→ {1, 2}} ?

• {x 7→ {2, 3}, y 7→ {1, 2}} ≤ {x 7→ {1, 2}, y 7→ {1, 2}} ?

• For any d ∈ D, d ≤ {x 7→ {}, y 7→ {}} ?

• For any d, d′ ∈ D, d ≤ d′ ∨ d′ ≤ d ?

end of exercise.

Exercise 2 – Lemma
Prove ∀C ∈ C, ∀d, d′ ∈ D, d ≤ d′ ⇔ sol(d,C) ⊆ sol(d′, C).
Recall/hint:

• Cartesian product: {1, 2} × {3, 4} = {(1, 3), (1, 4), (2, 3), (2, 4)}.

• Pointwise set inclusion: Let A,B,A′, B′ be sets. We have A×B ⊆ A′ ×B′ ⇔ A ⊆ A′ ∧B ⊆ B′.
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Exercise 3
Let X = {x, y, z} be a set of variables, d = {x 7→ {0, 1, 2}, y 7→ {0, 1, 2}, z 7→ {0, 1, 2}} be a domain function, and
⟨d, {x > y + z}⟩ be a constraint network.

• Find a domain function d′ such that sol(d′, {x > y + z}) = sol(d, {x > y + z}) and d′ ≤ d.

• Check whether it is the smallest domain function you can find, i.e.,
∀d′′ ∈ D, sol(d′′, {x > y + z}) = sol(d, {x > y + z}) ⇒ d′ ≤ d′′.

end of exercise.

2 Generalized Arc Consistency

A consistency is a property ϕ on a constraint network ⟨d,C⟩. We say ⟨d,C⟩ is ϕ-consistent whenever ϕ(⟨d,C⟩) holds.
Enforcing a consistency on a constraint network can remove values from the domains of the variables and make the
constraint network more explicit. It accelerates the search for a solution, as we will avoid to enumerate some locally
inconsistent assignments.

An assignment in sol(d, {c}) is called a support of the constraint c. A v-value is a pair (x, v) ∈ X ×Z. There exists
a support for a v-value (x, v) on c iff ∃asn ∈ sol(d, {c}), asn(x) = v.

Exercise 4 – Support
Let ⟨{x 7→ {0, 1}, y 7→ {1, 2}, z 7→ {0, 1}, {x = y, x ̸= z, y ̸= z}}⟩ be a constraint network.

• List the supports of x = y:

• List the supports of x ̸= z:

• List the supports of y ̸= z:

end of exercise.

Generalized arc consistency (GAC) consists in removing all v-values (x, v), v ∈ d(x) that have no support in the
constraints in which x occurs. Formally, a constraint c ∈ C is GAC-consistent iff

∀x ∈ scp(c), ∀v ∈ d(x), ∃asn ∈ sol(d, {c}), asn(x) = v

A constraint network ⟨d,C⟩ is GAC-consistent iff every constraint c ∈ C is GAC-consistent.
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Exercise 5 – GAC-consistent
Verify whether the constraint network defined in the previous exercise is GAC-consistent. If not, list all v-values that
make the constraint network not GAC-consistent.

end of exercise.

In the literature, you can sometimes read about node consistency which holds whenever all unary constraints are
GAC-consistent, and arc consistency which holds whenever all binary constraints are GAC-consistent. GAC-consistency
is usually the one enforced on arithmetic constraints in modern constraint solvers. It is also the strongest consistency that
can be defined when considering the constraints independently.

3 Constraint Propagation

In order to enforce GAC-consistency on a constraint network, we must first do it on a single constraint.
function revise(d, c)

E = {}
for x ∈ scp(c) do The two loops iterate over all v-values of c.

for v ∈ d(x) do
if ∀a ∈ sol(d, {c}), a(x) ̸= v then Check if (x, v) has no support on c.

d(x) = d(x) \ {v} Remove v from the domain of x.
E = E ∪ {x}

end if
end for

end for
return E Notify the caller which variables were reduced.

end function

Exercise 6 – Revise
Let d = {x 7→ {0, 1}, y 7→ {1, 2}, z 7→ {0, 1} be a domain function and ⟨d, {x = y, x ̸= z, y ̸= z}}⟩ be a constraint
network. What is the domain after applying revise(d, x = y)?

end of exercise.
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The simplest algorithm enforcing GAC-consistency consists in revising all the constraints until no domain is changing
anymore.

function GAC1 (d,C)
b = true

while b do
b = false

for c ∈ C do
if revise(d, c) ̸= {} then

b = true

end if
end for

end while
end function

It is however not very efficient since revising a constraint is only useful if the domain of one of its variables has
changed. Since constraints are sharing variables, revising a constraint might modify a variable shared by another con-
straint which, in turn, should be revised. This mechanism of propagating the results of local inferences from constraints
to constraints is called constraint propagation.

Exercise 7 – Constraint-oriented propagation scheme
Propose a function propagate(d,C,E) where ⟨d,C⟩ is a constraint network and E ⊆ X is the set of variables that
changed since the last call to propagate. Initially, the algorithm is called with propagate(d,C,X). The main idea is
to maintain a queue of constraints to revise. Initially, the queue contains all the constraints with a variable in E. Let
E′ = revise(d, c), then we must add in the queue all the constraints that have a variable in E′ in their scopes. The
function returns false if the constraint network is detected unsatisfiable, otherwise it returns true.

end of exercise.

Note that the algorithm propagate is independent of the underlying consistency achieved. Indeed, we can switch
revise with a function enforcing a different consistency.
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