Intelligent Systems—Problem Solving — page 1/4

UNIVERSITE DU
LUXEMBOURG

Lecture 3: Search

Intelligent Systems—Problem Solving
Pierre Talbot

“% Study a generic solving algorithm and its properties.

1 Search Strategy

A variable x is unassigned if |d(x)| > 1. A variable selection strategy is a function select : D — X U {_L}, such that
select(d) is the next variable to choose, or L if there is no unassigned variable in d. We suppose X = x1, ..., Z,, that
is, the variables are totally ordered. A simple selection strategy is to choose the first unassigned variable.
function firstvar(d)
for 1 <i<|X|do
if |d(x;)| > 1 then
return z;
end if
end for
return |
end function

Exercise 1
Define the variable selection strategy first-fail, which consists in selecting the unassigned variable with the smallest do-
main.

end of exercise.

Once a variable has been selected, we must choose which value to assign to it. This is the role of the value selection
strategy. The smallest strategy selects the smallest value in the domain of the variable.

function smallest(d, x)
return min d(x)

University of Luxembourg, Master in Computer Science/ISPS

Intelligent Systems—Problem Solving — page 2/4

end function

The combination of first-fail and smallest is a reasonnable search strategy to solve constraint problems. Next, we can
assemble those strategies to obtain a simple solving algorithm based on enumeration.

2 Solve by Enumeration

The simplest search algorithm is to iterate over all combinations of all values of d, e.g., d(x1) X ... X d(z,), and check
which ones satisfy the constraints.

We write d(z) = S the in-place update of the domain function d—similarly to what we would do in a programming
language if d is represented as an array (e.g., d[x] = S) or dictionnary.

function enumerate(d, C)

1:
2 x = firstvar(d)
3 if x = | then If all the variables are assigned to a value.
4: s={x—v|dx)={v}} We create an assignment from d.
5: for c € C' do We check if the assignment satisfies each constraint c.
6 if s ¢ rel(c) then If not, we return the empty set (no solution).
7 return {}
8 end if
9: end for
10: return {s}
11: else
12: dzx = d(z) We save the current domain of x.
13: v = smallest(d, x) We select a value from the domain.
14: d(z) = {v} We explore the left branch of the search tree where x = v.
15: S1 = enumerate(d, C)
16: d(z) =dz \ {v} We explore the right branch of the search tree where x # v.
17: Sy = enumerate(d, C')
18: d(z) = dx Restore the domain.
19: return S; U Sa
20: end if

21: end function
For clarity, we have used two specific variable and value selection strategies, but this algorithm can easily be made
generic for any pair of strategies.

Exercise 2
Modify enumerate to stop after you found one solution. Use the line numbers to indicate where you modify the algo-
rithm.

end of exercise.

Exercise 3
The algorithm enumerate explores a search tree where a leaf is reached when x = L (line 3). Is it a binary tree? What
is the tree search algorithm underlying enumerate: breadth-first search, depth-first search or best-first search?

University of Luxembourg, Master in Computer Science/ISPS

Intelligent Systems—Problem Solving — page 3/4

end of exercise.

Exercise 4

The expression s ¢ rel(c) (line 7) is inefficient as the set rel(c) might be large. Write a function check : Asn x C —
{true, false} such that check(a,c) is true whenever the assignment a satisfies the constraint c. Write check for the
constraints x = y and « < y + z. Furthermore, formally state what it means to be “correct” for the function check.

end of exercise.

3 Propagate and Search

Exercise 5
Modify enumerate to apply the procedure GAC} (d, C') in each node, which modifies d in-place.

end of exercise.

Exercise 6

What are the variables that can change between two calls to GAC}, excluding the ones modified by GAC;? Modify
enumerate to apply the procedure propagate(d,C, E) instead of GAC; where F is the set of variables that change
between two calls to propagate. We call this algorithm propsearch for propagate and search.

end of exercise.

University of Luxembourg, Master in Computer Science/ISPS

Intelligent Systems—Problem Solving — page 4/4

A solving algorithm solve : D x C — P(Asn) is sound and complete for any constraint network (d, C) if it

satisfies:
sol(d,C) C solve(d,C) (soundness)

sol(d,C) 2 solve(d, C) (completeness)

Those properties formalize what we usually mean by a “correct solving algorithm”. Typically, if you want to define
your own solving algorithm, you will have to prove those properties. For some classes of algorithms, such as genetic
algorithms, solving is only complete, in the sense that it does not guarantee we can ever find all solutions (or even one),
but if it finds one, it is a solution. On the other hand, a linear programming solver is typically sound but not complete
due to numerical imprecision of floating-point numbers.

Exercise 7
Prove or disprove whether soldom o propagate is a complete solving algorithm, where soldom(d, C') = sol(d, {}).

end of exercise.

We now abstract from a precise consistency and implementation of propagate. The soundness of propsearch depends
on whether propagate is sound. What to say about completeness? By the answer to the previous question, we know that
propagate is not complete, but we still want propsearch to be complete. To achieve that, we require propagate to be
complete on singleton domain functions, which is a weaker property than being complete on any domain function. For-
mally, for any constraint network (d, C'), whenever soldom(d) = {a}, then sol(d, C") D soldom(propagate(d,C, X)),
i.e., propagate must decide whether the assignment a is a solution or not. If it is not a solution, propagate must wipeout
at least the domain of a variable, i.e., 3z € X, d(z) = {}.

Exercise 8 — Branch-and-bound
Modify propsearch to return the solution such that an objective variable obj € X is maximized.

end of exercise.

4 More About Constraint Programming

* Constraint networks: techniques and algorithms, Christophe Lecoutre, 2008 (book).

* Coursera on Basic Modeling for Discrete Optimization to learn how to model constraint problems using MiniZinc: https:
//www.coursera.org/learn/basic-modeling.

University of Luxembourg, Master in Computer Science/ISPS

https://www.coursera.org/learn/basic-modeling
https://www.coursera.org/learn/basic-modeling

	Search Strategy
	Solve by Enumeration
	Propagate and Search
	More About Constraint Programming

