The following code is the grammar of the Calc
language which is incrementally built and explained in the previous chapter.
#![feature(plugin)] #![plugin(oak)] extern crate oak_runtime; use oak_runtime::*; grammar! calc { #![show_api] program = spacing expression expression = term (term_op term)* > fold_left term = exponent (factor_op exponent)* > fold_left exponent = (factor exponent_op)* factor > fold_right factor = number > number_expr / identifier > variable_expr / let_expr > let_in_expr / lparen expression rparen let_expr = let_kw let_binding in_kw expression let_binding = identifier bind_op expression term_op = add_op > add_bin_op / sub_op > sub_bin_op factor_op = mul_op > mul_bin_op / div_op > div_bin_op exponent_op = exp_op > exp_bin_op identifier = !digit !keyword ident_char+ spacing > to_string ident_char = ["a-zA-Z0-9_"] digit = ["0-9"] number = digit+ spacing > to_number spacing = [" \n\r\t"]* -> (^) kw_tail = !ident_char spacing keyword = let_kw / in_kw let_kw = "let" kw_tail in_kw = "in" kw_tail bind_op = "=" spacing add_op = "+" spacing sub_op = "-" spacing mul_op = "*" spacing div_op = "/" spacing exp_op = "^" spacing lparen = "(" spacing rparen = ")" spacing use std::str::FromStr; use self::Expression::*; use self::BinOp::*; pub type PExpr = Box<Expression>; #[derive(Debug)] pub enum Expression { Variable(String), Number(u32), BinaryExpr(BinOp, PExpr, PExpr), LetIn(String, PExpr, PExpr) } #[derive(Debug)] pub enum BinOp { Add, Sub, Mul, Div, Exp } fn to_number(raw_text: Vec<char>) -> u32 { u32::from_str(&*to_string(raw_text)).unwrap() } fn number_expr(value: u32) -> PExpr { Box::new(Number(value)) } fn variable_expr(ident: String) -> PExpr { Box::new(Variable(ident)) } fn to_string(raw_text: Vec<char>) -> String { raw_text.into_iter().collect() } fn fold_left(head: PExpr, rest: Vec<(BinOp, PExpr)>) -> PExpr { rest.into_iter().fold(head, |accu, (op, expr)| Box::new(BinaryExpr(op, accu, expr))) } fn fold_right(front: Vec<(PExpr, BinOp)>, last: PExpr) -> PExpr { front.into_iter().rev().fold(last, |accu, (expr, op)| Box::new(BinaryExpr(op, expr, accu))) } fn let_in_expr(var: String, value: PExpr, expr: PExpr) -> PExpr { Box::new(LetIn(var, value, expr)) } fn add_bin_op() -> BinOp { Add } fn sub_bin_op() -> BinOp { Sub } fn mul_bin_op() -> BinOp { Mul } fn div_bin_op() -> BinOp { Div } fn exp_bin_op() -> BinOp { Exp } } fn analyse_state(state: ParseState<StrStream, calc::PExpr>) { use oak_runtime::parse_state::ParseResult::*; match state.into_result() { Success(data) => println!("Full match: {:?}", data), Partial(data, expectation) => { println!("Partial match: {:?} because: {:?}", data, expectation); } Failure(expectation) => { println!("Failure: {:?}", expectation); } } } fn main() { analyse_state(calc::parse_program("2 * a".into_state())); // Complete analyse_state(calc::parse_program("2 * ".into_state())); // Partial analyse_state(calc::parse_program(" * a".into_state())); // Erroneous let program1 = "let a = 5 in \ let b = 2 in \ a^2 + b^2 + (a - b)^2 \ "; analyse_state(calc::parse_program(program1.into_state())); let program2 = "let a = \ let b = 7^3 in 2 * b \ in \ a^2 - (let x = a in x * 2) \ "; println!("{:?}", calc::parse_program(program2.into_state()).into_result()); }Run